Xu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6830135/publications.pdf Version: 2024-02-01

XIIMANC

#	Article	IF	CITATIONS
1	Nicotinamide N-methyltransferase protects against deoxynivalenol-induced growth inhibition by suppressing pro-inflammatory cytokine expression. Food and Chemical Toxicology, 2022, 163, 112969.	3.6	5
2	A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. Journal of Advanced Research, 2021, 29, 191-205.	9.5	10
3	Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. European Heart Journal, 2020, 41, 995-1005.	2.2	56
4	The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. Cell Reports, 2020, 32, 108203.	6.4	23
5	Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics, 2020, 112, 4897-4911.	2.9	6
6	MicroRNAâ€204â€5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans. Journal of Cellular Physiology, 2020, 235, 9851-9863.	4.1	18
7	Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends in Food Science and Technology, 2019, 88, 33-45.	15.1	14
8	MicroRNAâ€382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. Journal of Cellular Physiology, 2019, 234, 6601-6610.	4.1	19
9	An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function. Cell Systems, 2018, 6, 90-102.e4.	6.2	47
10	The mitogen-activated protein kinase kinase 9 (MKK9) modulates nitrogen acquisition and anthocyanin accumulation under nitrogen-limiting condition in Arabidopsis. Biochemical and Biophysical Research Communications, 2017, 487, 539-544.	2.1	17
11	Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metabolism, 2017, 25, 301-311.	16.2	213
12	An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism. Molecular Metabolism, 2017, 6, 1429-1442.	6.5	21
13	Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Molecular Cell, 2017, 68, 540-551.e5.	9.7	47
14	Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2017, 127, 583-592.	8.2	50
15	NAD ⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352, 1436-1443.	12.6	907
16	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	12.4	208
17	Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BNâ€PAGE). Current Protocols in Mouse Biology, 2016, 6, 1-14.	1.2	212
18	LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes and Development, 2016, 30, 1255-1260.	5.9	56

Xu Wang

#	Article	IF	CITATIONS
19	Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology, 2016, 63, 1190-1204.	7.3	289
20	Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology, 2015, 62, 1606-1618.	7.3	46
21	Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays, 2015, 37, 1045-1053.	2.5	108
22	Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 2015, 10, 1681-1691.	6.4	385
23	A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Scientific Reports, 2014, 4, 5285.	3.3	42
24	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	16.2	73
25	Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chemistry, 2013, 141, 2385-2393.	8.2	107
26	Comparative Proteomics Analysis of Selenium Responses in Selenium-Enriched Rice Grains. Journal of Proteome Research, 2013, 12, 808-820.	3.7	26
27	A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. Journal of Proteomics, 2013, 78, 486-498.	2.4	103
28	Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. Journal of Proteomics, 2012, 75, 1849-1866.	2.4	99
29	A Comprehensive Differential Proteomic Study of Nitrate Deprivation in <i>Arabidopsis</i> Reveals Complex Regulatory Networks of Plant Nitrogen Responses. Journal of Proteome Research, 2012, 11, 2301-2315.	3.7	71

30 Proteomic Analysis of Interactions Between the Generalist Herbivore Spodoptera exigua (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 T

31	Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry, 2006, 67, 2341-2348.	2.9	76
----	---	-----	----