Jennifer J Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829981/publications.pdf

Version: 2024-02-01

623734 996975 1,579 20 14 15 h-index citations g-index papers 21 21 21 3227 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	T cell regeneration after immunological injury. Nature Reviews Immunology, 2021, 21, 277-291.	22.7	99
2	An intestinal organoid–based platform that recreates susceptibility to T-cell–mediated tissue injury. Blood, 2020, 135, 2388-2401.	1.4	39
3	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	11.9	93
4	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	30.7	34
5	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	11.0	86
6	Nrf2 regulates CD4+ T cell–induced acute graft-versus-host disease in mice. Blood, 2018, 132, 2763-2774.	1.4	26
7	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	12.4	404
8	Characterization of a c-Rel Inhibitor That Mediates Anticancer Properties in Hematologic Malignancies by Blocking NF-κB–Controlled Oxidative Stress Responses. Cancer Research, 2016, 76, 377-389.	0.9	36
9	Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. Journal of Experimental Medicine, 2014, 211, 2341-2349.	8.5	95
10	A Small-Molecule c-Rel Inhibitor Reduces Alloactivation of T Cells without Compromising Antitumor Activity. Cancer Discovery, 2014, 4, 578-591.	9.4	51
11	Nrf2 regulates haematopoietic stem cell function. Nature Cell Biology, 2013, 15, 309-316.	10.3	173
12	Sex Steroid Blockade Enhances Thymopoiesis By Modulating Notch Signaling. Blood, 2013, 122, 291-291.	1.4	1
13	Interleukin-22 Drives Endogenous Thymic Regeneration in Mice. Science, 2012, 336, 91-95.	12.6	334
14	Inhibition of c-Rel Signaling: A Novel Small Molecule-Based Therapy Diminishing T Cell Alloactivation While Preserving Anti-Tumor Activity. Blood, 2012, 120, 454-454.	1.4	0
15	The Central Nervous System Is a Target Organ of Acute Graft-Versus-Host Disease. Blood, 2011, 118, 1895-1895.	1.4	0
16	Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo. Blood, 2010, 116, e18-e25.	1.4	43
17	The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. Journal of Clinical Investigation, 2010, 120, 343-356.	8.2	62
18	Genetic Engineering of Donor T Cells for BMT Immunotherapy: Expression of TRAIL and PLZF Selectively Enhances GVT and Abrogates Gvhd. Blood, 2010, 116, 730-730.	1.4	0

#	Article	lF	CITATIONS
19	TRAIL/ DR5 Interactions Are Important for Thymic Damage After Allogeneic Bone Marrow Transplantation Blood, 2009, 114, 234-234.	1.4	0
20	Concurrent Visualization of Trafficking and NFAT Signalling in Primary T Lymphocytes and T Cell Precursors In Vivo Blood, 2009, 114, 914-914.	1.4	0