John Newman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6829978/john-newman-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,578 76 154 334 h-index g-index citations papers 28,286 7.18 358 4.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
334	Increased Donnan exclusion in charged polymer networks at high salt concentrations <i>Soft Matter</i> , 2021 ,	3.6	3
333	Turbulent Flow past a Flat Plate at Zero Incidence. Russian Journal of Electrochemistry, 2021, 57, 743-7	561.2	1
332	Viscous Sublayer. Russian Journal of Electrochemistry, 2020 , 56, 263-269	1.2	2
331	New Perspectives on Turbulence. Russian Journal of Electrochemistry, 2020, 56, 795-808	1.2	2
330	Turbulent Flow with the Inner Cylinder Rotating. Russian Journal of Electrochemistry, 2019, 55, 44-51	1.2	1
329	Further Thoughts on Turbulent Flow in a Pipe. Russian Journal of Electrochemistry, 2019, 55, 34-43	1.2	4
328	Theoretical Interpretation of Ion Velocities in Concentrated Electrolytes Measured by Electrophoretic NMR. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A264-A267	3.9	7
327	Anisotropic Ion Diffusion and Electrochemically Driven Transport in Nanostructured Block Copolymer Electrolytes. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 1537-1544	3.4	29
326	The Energy Future. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 153-174	8.9	13
325	Calculus of Variations 2018 , 181-197		
324	Disk Electrode in an Insulating Plane 2018, 95-101		
323	Similarity Transformations 2018 , 119-124		
322	Migration in Rapid Double-Layer Charging 2018 , 141-146		
321	Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3186-A3194	3.9	32
320	Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3014-A3021	3.9	23
319	Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2766-A2773	3.9	54
318	Application of the dissipation theorem to turbulent flow and mass transfer in a pipe. <i>Russian Journal of Electrochemistry</i> , 2017 , 53, 1061-1075	1.2	4

(2012-2017)

317	Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, E3569-E3575	3.9	135
316	Determination of Effective Heat-Transfer Coefficient for Dualfoil, Based on Full-Scale Cylindrical and Prismatic Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, E3686-E3689	3.9	
315	Harvesting Waste Heat in Unipolar Ion Conducting Polymers. ACS Macro Letters, 2016, 5, 94-98	6.6	49
314	Theoretical Analysis of Turbulent Mass Transfer with Rotating Cylinders. <i>Journal of the Electrochemical Society</i> , 2016 , 163, E191-E198	3.9	5
313	Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2720-A2722	3.9	71
312	Nonequilibrium Linear Response Theory: Application to OnsagerBtefanMaxwell Diffusion. <i>Industrial & Diffusion Chemistry Research</i> , 2015 , 54, 4460-4467	3.9	7
311	An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting. <i>Journal of the Electrochemical Society</i> , 2014 , 161, E3328-E3340	3.9	28
310	Simulation of temperature rise in Li-ion cells at very high currents. <i>Journal of Power Sources</i> , 2014 , 271, 444-454	8.9	42
309	Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1350-A1359	3.9	71
308	Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A948-A954	3.9	19
307	Water Electrolysis with a Homogeneous Catalyst in an Electrochemical Cell. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F1143-F1150	3.9	5
306	Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A394-A403	3.9	71
305	Scaling with Ohm's Law; Wired vs. Wireless Photoelectrochemical Cells. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F309-F311	3.9	36
304	Crossover in a Homogeneous-Catalyst Reactor. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F395-I	F 4 09	3
303	Review: An Economic Perspective on Liquid Solar Fuels. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1722-A1729	3.9	78
302	Experimental and Theoretical Investigation of Solid-Electrolyte-Interphase Formation Mechanisms on Glassy Carbon. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1775-A1785	3.9	55
301	Separation of Double-Layer Charging and Faradaic Processes at Electrodes: Figure 1 <i>Journal of the Electrochemical Society</i> , 2012 , 159, E59-E61	3.9	21
300	Whither solar fuels?. <i>Current Opinion in Chemical Engineering</i> , 2012 , 1, 204-210	5.4	41

299 Lithium Redistribution in Lithium-Metal Batteries. Journal of the Electrochemical Society, 2012, 159, A16159A1628

Transient Characterization of Solid-Electrolyte-Interphase Using Ferrocene. Journal of the Electrochemical Society, 2012, 159, A281-A289 Steady-State Diffusion Coefficients for Water in Nafion in the Absence of Inert Gas. Journal of the Electrochemical Society, 2012, 159, B754-B760 Effect of Graphite Orientation and Lithium Salt on Electronic Passivation of Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641 Why is the Solid-Electrolyte-Interphase Selective? Through-Film Ferrocenium Reduction on Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A1922-A1927 294 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. ECS Transactions, 2011, 41, 201-220 293 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. ECS Transactions, 2011, 158, B1142 294 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B142 295 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B142 296 Cold Start of a Polymer-Electrolyte Fuel Cell i. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B277 297 Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, B330 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2011, 158, B330 289 Electrochemical Society, 2011, 158, B330 280 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 287 Transactions, 2010, 33, 1545-1559 288 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 289 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transa				
Effect of Graphite Orientation and Lithium Salt on Electronic Passivation of Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641 39 42 Why is the Solid-Electrolyte-Interphase Selective? Through-Film Ferrocenium Reduction on Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641 39 27 Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641 39 27 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. ECS Transactions, 2011, 41, 201-220 49 29 2014, 158, B948 39 9 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B948 39 9 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B9142 39 40 40 40 40 40 40 40 40 40 40 40 40 40	298		3.9	31
Why is the Solid-Electrolyte-Interphase Selective? Through-Film Ferrocenium Reduction on Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A1922-A1927 39 27 294 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. ECS Transactions, 2011, 41, 201-220 295 Cold Start of a Polymer-Electrolyte Fuel Cell III. Optimization of Operational and Configurational Parameters. Journal of the Electrochemical Society, 2011, 158, B948 39 9 295 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of Parameters. Journal of the Electrochemical Society, 2011, 158, B948 39 9 296 Electrochemical Society, 2011, 158, B1142 39 19 297 Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B917 39 37 39 39 39 39 39 39 39 39 39 39 39 39 39	297		3.9	3
Cold-Start of a Polymer-Electrolyte Fuel Cell II. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B917 Cold Start of a Polymer-Electrolyte Fuel Cell III. Optimization of Operational and Configurational Parameters. Journal of the Electrochemical Society, 2011, 158, B948 292 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B948 293 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B1142 294 Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B927 295 Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, B930 286 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 287 Two-Dimensional Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 287 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 288 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 40 Transactions 2009, 16, 285-296	296		3.9	42
Cold Start of a Polymer-Electrolyte Fuel Cell III. Optimization of Operational and Configurational Parameters. Journal of the Electrochemical Society, 2011, 158, B948 292 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B1142 294 Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B927 295 Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, A530 286 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 287 Two-Dimensional Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 288 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS 1 3 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 287 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 288 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 209, 16, 285-296 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 440 10	295		3.9	27
292 Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode. Journal of the Electrochemical Society, 2011, 158, B1142 291 Cold Start of a Polymer-Electrolyte Fuel Cell L. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B1142 291 Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B927 292 Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, A530 283 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 284 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 285 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 287 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 288 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 167, 285-296 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 440 10	294		1	
the Electrochemical Society, 2011, 158, B1142 291 Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of the Electrochemical Society, 2011, 158, B927 290 Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, A530 289 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 287 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 289 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 280 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 284 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 285 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 440 10	293		3.9	9
Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, A530 289 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 287 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 287 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 288 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 440 10	292		3.9	19
289 Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies. Journal of the Electrochemical Society, 2011, 158, B939 288 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 287 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 287 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 288 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 44 10	291		3.9	37
of the Electrochemical Society, 2011, 158, B939 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1911 287 Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 286 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 285 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 284 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 286 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 487 Two-Dimensional Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 1 3 287 Transactions, 2010, 33, 1545-1559 1 3 288 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 489 Two-Dimensional Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 289 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 480 Two-Dimensional Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Engineering Science, 2010, 429-461	290		3.9	50
Two-Dimensional Model for Cold Start in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2010, 33, 1545-1559 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 4.4 10	289		3.9	11
Transactions, 2010, 33, 1545-1559 Mathematical Modeling of CO[sub 2] Reduction to CO in Aqueous Electrolytes. Journal of the Electrochemical Society, 2010, 157, B1902 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 4-4 10	288		3.9	4º
Electrochemical Society, 2010, 157, B1902 Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010, 429-461 Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 4.4 10	287		1	3
Water Movement During Freezing in a Polymer-Electrolyte-Membrane Fuel Cell. ECS Transactions, 2009, 16, 285-296 283 Onsager's shortcut to proper forces and fluxes. Chemical Engineering Science, 2009, 64, 4804-4809 4.4 10	286		3.9	60
283 Onsager's shortcut to proper forces and fluxes. <i>Chemical Engineering Science</i> , 2009 , 64, 4804-4809 4.4 10	285	Battery Size and Capacity Use in Hybrid and Plug-In Hybrid Electric Vehicles 2010 , 429-461		
	284		1	7
282 StefanMaxwell mass transport. <i>Chemical Engineering Science</i> , 2009 , 64, 4796-4803 4.4 8	283	Onsager's shortcut to proper forces and fluxes. <i>Chemical Engineering Science</i> , 2009 , 64, 4804-4809	4.4	10
	282	StefanMaxwell mass transport. <i>Chemical Engineering Science</i> , 2009 , 64, 4796-4803	4.4	8

(2007-2009)

281	Two-Dimensional Modeling of Lithium Deposition during Cell Charging. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A390	3.9	158
280	Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A606	3.9	136
279	Using a Quasi-Potential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells. <i>SIAM Journal on Applied Mathematics</i> , 2009 , 70, 488-509	1.8	8
278	A Combination Model for Macroscopic Transport in Polymer-Electrolyte Membranes. <i>Topics in Applied Physics</i> , 2009 , 157-198	0.5	3
277	Modeling Water Management in Polymer-Electrolyte Fuel Cells. <i>Modern Aspects of Electrochemistry</i> , 2008 , 1-143		1
276	Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybrid-Electric-Vehicle Operation. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A664	3.9	83
275	Modeling Side Reactions and Nonisothermal Effects in Nickel Metal-Hydride Batteries. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A48	3.9	24
274	Design of an Electrochemical Cell Making Syngas (CO+H[sub 2]) from CO[sub 2] and H[sub 2]O Reduction at Room Temperature. <i>Journal of the Electrochemical Society</i> , 2008 , 155, B42	3.9	308
273	Mathematical Modeling of a Cation-Exchange Membrane Containing Two Cations. <i>Journal of the Electrochemical Society</i> , 2008 , 155, B1210	3.9	17
272	Measuring the Salt Activity Coefficient in Lithium-Battery Electrolytes. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A458	3.9	59
271	Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A253	3.9	51
270	Simulation of Pulse Discharge of the Littf[sub x] System. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A24	3.9	7
269	The Use of UV/vis Absorption to Measure Diffusion Coefficients in LiPF[sub 6] Electrolytic Solutions. <i>Journal of the Electrochemical Society</i> , 2008 , 155, F13	3.9	78
268	I. A simplified model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles. <i>Journal of Power Sources</i> , 2008 , 183, 376-380	8.9	7
267	II. A combined model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles. <i>Journal of Power Sources</i> , 2008 , 183, 771-782	8.9	35
266	Water-Nafion equilibria. absence of Schroeder's paradox. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 10)1 66 ‡73	3 139
265	Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. <i>Fluid Phase Equilibria</i> , 2007 , 261, 421-426	2.5	149
264	Simulation of the Littf[sub x] System. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A477	3.9	14

263	Effects of Membrane- and Catalyst-Layer-Thickness Nonuniformities in Polymer-Electrolyte Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2007 , 154, B405	3.9	26
262	Macroscopic Modeling of Polymer-Electrolyte Membranes 2007 , 47-117		13
261	Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A2205	3.9	174
260	Calculation of the streaming potential near a rotating disk. <i>Langmuir</i> , 2006 , 22, 9765-9	4	36
259	Existence of Path-Dependence in the LiFePO[sub 4] Electrode. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A110		160
258	Optimization of Lithium Titanate Electrodes for High-Power Cells. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A560	3.9	81
257	A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1019	3.9	301
256	Onsager Reciprocal Relations for StefanMaxwell Diffusion. <i>Industrial & Diffusion amp; Engineering Chemistry Research</i> , 2006 , 45, 5361-5367	3.9	18
255	Stress generation and fracture in lithium insertion materials. <i>Journal of Solid State Electrochemistry</i> , 2006 , 10, 293-319	2.6	479
254	Comparison of LiFePO[sub 4] from Different Sources. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A664	3.9	80
253	The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A396	3.9	924
252	Modeling gas-phase flow in porous media. <i>International Communications in Heat and Mass Transfer</i> , 2005 , 32, 855-860	5.8	14
251	Characterization of an electroactive polymer for overcharge protection in secondary lithium batteries. <i>Electrochimica Acta</i> , 2005 , 50, 4666-4673	6.7	19
250	Effects of Microporous Layers in Polymer Electrolyte Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A677	3.9	343
249	Cyclable Lithium and Capacity Loss in Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A8	183.9	145
248	Modeling Two-Phase Behavior in PEFCs. Journal of the Electrochemical Society, 2004, 151, A1715	3.9	216
247	Modeling the Behavior of Electroactive Polymers for Overcharge Protection of Lithium Batteries. Journal of the Electrochemical Society, 2004 , 151, A509	3.9	22
246	A theoretical study of membrane constraint in polymer-electrolyte fuel cells. <i>AICHE Journal</i> , 2004 , 50, 3215-3226	3.6	74

245	Modeling Transport in Polymer-Electrolyte Fuel Cells. <i>ChemInform</i> , 2004 , 35, no		2
244	Molecular simulation of the surface tension of simple aqueous electrolytes and the Gibbs adsorption equation. <i>Current Opinion in Colloid and Interface Science</i> , 2004 , 9, 145-148	7.6	32
243	Discharge Model for the Lithium Iron-Phosphate Electrode. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1517	3.9	565
242	Transport in Polymer-Electrolyte Membranes. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A311	3.9	308
241	Monte Carlo Simulations of Disjoining-Pressure Isotherms for Lennard Dones Surfactant-Stabilized Free Thin Films. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13412-13418	3.4	8
240	Molecular Dynamics Simulations of Surface Tensions of Aqueous Electrolytic Solutions. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9077-9084	3.4	49
239	Transport in Polymer-Electrolyte Membranes. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A326	3.9	87
238	A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1977	3.9	214
237	Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1530	3.9	154
236	The Effect of Interfacial Deformation on Electrodeposition Kinetics. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A880	3.9	228
235	Modeling transport in polymer-electrolyte fuel cells. <i>Chemical Reviews</i> , 2004 , 104, 4679-726	68.1	544
234	Molecular Dynamics Simulations of Multicomponent Diffusion. 1. Equilibrium Method. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18353-18361	3.4	81
233	Molecular Dynamics Simulations of Multicomponent Diffusion. 2. Nonequilibrium Method. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18362-18367	3.4	43
232	Thermal Modeling of Porous Insertion Electrodes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1	76 .9	209
231	Evaluation of DLVO theory with disjoining-pressure and film-conductance measurements of common-black films stabilized with sodium dodecyl sulfate. <i>Journal of Colloid and Interface Science</i> , 2003 , 262, 442-55	9.3	24
230	Modeling of lithium-ion batteries. <i>Journal of Power Sources</i> , 2003 , 119-121, 838-843	8.9	194
229	Heats of mixing and of entropy in porous insertion electrodes. <i>Journal of Power Sources</i> , 2003 , 119-121, 844-849	8.9	140
228	Molecular Simulation of Disjoining-Pressure Isotherms for Free Aqueous Thin Films. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13076-13083	3.4	26

227	Dendrite Growth in Lithium/Polymer Systems. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1377	3.9	501
226	Transport in Polymer-Electrolyte Membranes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1008	3.9	231
225	A less expensive Ewald lattice sum. <i>Chemical Physics Letters</i> , 2002 , 366, 537-543	2.5	20
224	Simulation of the Direct Methanol Fuel Cell. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A729	3.9	62
223	Monte Carlo Simulation of the Open-Circuit Potential and the Entropy of Reaction in Lithium Manganese Oxide. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A493	3.9	17
222	Simulation of the Direct Methanol Fuel Cell. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A718	3.9	139
221	Simulation of the Direct Methanol Fuel Cell. Journal of the Electrochemical Society, 2002, 149, A710	3.9	67
220	Mathematical Modeling of Lithium Batteries 2002 , 345-392		83
219	Molecular Simulation of Disjoining-Pressure Isotherms for Free Liquid, Lennard-Jones Thin Films. Journal of Physical Chemistry B, 2002 , 106, 6529-6537	3.4	44
218	Phase equilibria for waterfhethanol mixtures in perfluorosulfonic-acid membranes. <i>AICHE Journal</i> , 2001 , 47, 445-452	3.6	6
217	Transient linear stability of a Simons-process gasllquid electrochemical flow reactor using numerical simulations. <i>Chemical Engineering Science</i> , 2001 , 56, 5815-5834	4.4	6
216	Cathodic Protection for Disks of Various Diameters. <i>Journal of the Electrochemical Society</i> , 2001 , 148, B157	3.9	2
215	Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A570	3.9	100
214	Hysteresis during Cycling of Nickel Hydroxide Active Material. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A969	3.9	66
213	Equilibrium Force Isotherms of a Deformable Bubble/Drop Interacting with a Solid Particle across a Thin Liquid Film. <i>Langmuir</i> , 2001 , 17, 116-130	4	61
212	Modeling of a Two-Phase Electrochemical Reactor for the Fluorination of Organic Compounds. 2. Multiple Steady States. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 3117-3126	3.9	4
211	Modeling of a Two-Phase Electrochemical Reactor for the Fluorination of Organic Compounds. 1. Maximum Production Rate. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 3109-3116	3.9	3
210	Equilibrium and diffusion of methanol and water in a nafion 117 membrane. <i>AICHE Journal</i> , 2000 , 46, 2076-2085	3.6	67

(1998-2000)

209	Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. Journal of Power Sources, 2000 , 89, 132-138	8.9	134
208	High-power batteries for use in hybrid vehicles. <i>Journal of Power Sources</i> , 2000 , 85, 229-236	8.9	65
207	Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries. <i>Journal of Power Sources</i> , 2000 , 88, 219-231	8.9	202
206	The Impedance Response of a Porous Electrode Composed of Intercalation Particles. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2930	3.9	290
205	Predictions of Specific Energies and Specific Powers of Double-Layer Capacitors Using a Simplified Model. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 820	3.9	56
204	Verification and Analysis of Transference Number Measurements by the Galvanostatic Polarization Method. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3036	3.9	45
203	Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 99	3.9	152
202	Dynamic Monte Carlo Simulations of Diffusion in Li y Mn2 O 4. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 3765-3772	3.9	47
201	Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 156, 137-144	5.1	46
200	Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces: Part II. Shape calculations. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 156, 525-546	5.1	34
199	Double-Layer Capacitance in a Dual Lithium Ion Insertion Cell. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 4360-4365	3.9	103
198	Proton Intercalation Hysteresis in Charging and Discharging Nickel Hydroxide Electrodes. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 2769-2779	3.9	48
197	Surface Conductivity and Disjoining Pressure of Common Black Films Stabilized with Sodium Dodecyl Sulfate. <i>Journal of Colloid and Interface Science</i> , 1998 , 203, 69-82	9.3	7
196	On converting from the McMillan-Mayer framework I. Single-solvent system. <i>Fluid Phase Equilibria</i> , 1998 , 145, 255-268	2.5	31
195	Profiles and Performance Curves in a Parallel-Plate Reactor for the Electrochemical Fluorination of Hydrocarbons. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 1578-1585	3.9	4
194	Mass Transfer and Kinetic Phenomena at the Nickel Hydroxide Electrode. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 3860-3874	3.9	39
193	Mass Transport in Gas-Diffusion Electrodes: A Diagnostic Tool for Fuel-Cell Cathodes. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 5-15	3.9	273
192	Modeling Side Reactions in Composite Li y Mn2 O 4 Electrodes. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 990-998	3.9	122

191	On the Short-Time Behavior of Porous Intercalation Electrodes. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 3057-3063	3.9	51
190	Cathodic Protection of a Plane with Parallel Cylindrical Anodes. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 450-454	3.9	3
189	Segment density of a block copolymer chain tethered at both ends. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 4355-4370		2
188	Simulation of Recombinant Lead-Acid Batteries. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 3081	-3,091	58
187	Temperature Dependence of the Diffusion Coefficient of Sulfuric Acid in Water. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1302-1307	3.9	7
186	Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 4201-4208	3.9	101
185	Heat-Generation Rate and General Energy Balance for Insertion Battery Systems. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 2697-2704	3.9	232
184	Modeling of Nickel/Metal Hydride Batteries. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 3818-38.	31 3.9	78
183	Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 1890-1903	3.9	972
182	Variable Diffusivity in Intercalation Materials: A Theoretical Approach. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 1287-1292	3.9	37
181	The Influence of Side Reactions on the Performance of Electrochemical Double-Layer Capacitors. Journal of the Electrochemical Society, 1996 , 143, 1806-1814	3.9	91
180	Electrostatic Protein-Protein Interactions: Comparison of Point-Dipole and Finite-Length Dipole Potentials of Mean Force. <i>Journal of Colloid and Interface Science</i> , 1996 , 177, 276-279	9.3	19
179	Thermal Modeling of the Lithium/Polymer Battery: II . Temperature Profiles in a Cell Stack. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3282-3288	3.9	137
178	Electrochemical Conversion of Anhydrous HCl to Cl2 Using a Solid-Polymer-Electrolyte Electrolysis Cell. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3619-3625	3.9	26
177	The Electrical Conductivity of Sodium Polysulfide Melts. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 761-764	3.9	5
176	Periodic Behavior in the Iron/Sulfuric Acid System. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 37	79 . 377	'9 ₅₄
175	Analysis of Transference Number Measurements Based on the Potentiostatic Polarization of Solid Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3465-3468	3.9	80
174	The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1859-1868	3.9	199

173	Temperature Rise in a Battery Module with Constant Heat Generation. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1054-1057	3.9	41
172	Thermal Modeling of the Lithium/Polymer Battery: I . Discharge Behavior of a Single Cell. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3274-3281	3.9	216
171	Thermoelectric effects in electrochemical systems. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 3208-3216	3.9	38
170	Modeling of a Growing Oxide Film: The Iron/Iron Oxide System. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1423-1430	3.9	46
169	Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction-Zone Model. Journal of the Electrochemical Society, 1995 , 142, 97-101	3.9	107
168	The use of mathematical modeling in the design of lithium/polymer battery systems. <i>Electrochimica Acta</i> , 1995 , 40, 2191-2196	6.7	227
167	Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases. <i>Journal of Power Sources</i> , 1995 , 54, 46-51	8.9	89
166	Metal Hydride Electrodes. <i>Modern Aspects of Electrochemistry</i> , 1995 , 359-382		8
165	Magnetic Field Effects in High-Power Batteries: II . Time Constant of a Radial Circuit Terminated by a Cylindrical Cell with Inductance. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 708-713	3.9	1
164	A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. <i>Journal of Power Sources</i> , 1994 , 52, 211-216	8.9	69
163	The importance of the lithium ion transference number in lithium/polymer cells. <i>Electrochimica Acta</i> , 1994 , 39, 2073-2081	6.7	359
162	Theoretical Analysis of the Discharge Performance of a NiOOH / H 2 Cell. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 54-64	3.9	41
161	Relaxation Phenomena in Lithium-Ion-Insertion Cells. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 982-990	3.9	301
160	Simulation and Optimization of the Dual Lithium Ion Insertion Cell. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 1-10	3.9	1167
159	Magnetic Field Effects in High-Power Batteries: I . The Penetration of an Electric Field into a Cylindrical Conductor. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 703-708	3.9	2
158	Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 1218-1225	3.9	515
157	Modeling Diffusion and Migration in Dilute Electrochemical Systems Using the Quasi-Potential Transformation. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 414-420	3.9	30
156	Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 1526-1533	3.9	2031

155	Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 1961-1968	3.9	91
154	Dependent-Variable Transformation for the Treatment of Diffusion, Migration, and Homogeneous Reactions: Application to a Corroding Pit. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 2530-2537	3.9	21
153	Diffusion of Sulfuric Acid in Concentrated Solutions. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 2217-2221	3.9	18
152	Current and Potential Distributions on a Cylinder Electrode. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 1625-1631	3.9	6
151	Convective diffusion near a consolute point. <i>International Journal of Heat and Mass Transfer</i> , 1993 , 36, 347-351	4.9	3
150	Reaction distribution in a corroding pit. <i>Electrochimica Acta</i> , 1993 , 38, 1649-1659	6.7	9
149	Experimental Determination of the Transport Number of Water in Nafion 117 Membrane. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 1332-1337	3.9	203
148	A transformation for the treatment of diffusion and migration. Application to stationary disk and hemisphere electrodes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 314, 23-44		53
147	Current Distributions on Recessed Electrodes. <i>Journal of the Electrochemical Society</i> , 1991 , 138, 1620-1	63.5)	22
146	Cathodic Protection with Parallel Cylinders. <i>Journal of the Electrochemical Society</i> , 1991 , 138, 3554-356	03.9	16
145	Mathematical Modeling of the Sodium/Iron Chloride Battery. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 876-883	3.9	13
144	A Criterion to Verify Current Distribution Calculations. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 2745-2752	3.9	1
143	Current Distribution at Electrode Edges at High Current Densities. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 132-139	3.9	12
142	Singular Perturbation Analysis of the Faradaic Impedance of Copper Dissolution Accounting for the Effects of Finite Rates of a Homogeneous Reaction. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 2820-2831	3.9	6
141	Corrections to Kinetic Measurements Taken on a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 139-143	3.9	16
140	Potential and Concentration Variations of a Reacting, Supporting Electrolyte. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3319-3325	3.9	13
139	Differential Diffusion Coefficients of Sodium Polysulfide Melts. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3362-3369	3.9	26
138	The Effect of Schmidt Number on the Faradaic Impedance of the Dissolution of a Copper Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 2896-2902	3.9	4

137	Current Distribution near an Electrode Edge as a Primary Distribution Is Approached. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 2935-2939	3.9	5	
136	Interpretation of Kinetic Rate Data Taken in a Channel Flow Cell. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3755-3759	3.9	12	
135	Effects of Finite Rates of a Homogeneous Reaction on the Steady-State Dissolution of Copper in Chloride Solutions. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3249-3255	3.9	10	
134	Determination of the Diffusion Coefficient from Impedance Data in the Low Frequency Range. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 134-138	3.9	13	
133	Mathematical Modeling of LiAl / LiCl , KCl / FeS Cells. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2922-2931	3.9	7	
132	Transference Number Calculations for Sodium Polysulfides. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 1715-1718	3.9	6	
131	Design of Thin-Gap Channel Flow Cells. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1181-1186	3.9	12	
130	Anodic Dissolution of Iron in Acidic Sulfate Electrolytes: II . Mathematical Model of Current Oscillations Observed under Potentiostatic Conditions. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1051-1059	3.9	74	
129	Growth of radially symmetric ice in a supercooled sucrose solution. <i>Industrial & Description of the Mistry Research</i> , 1987 , 26, 23-27	3.9	2	
128	Electrochemistry of Iodide in Propylene Carbonate: II . Theoretical Model. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 2210-2215	3.9	6	
127	Mathematical Modeling of Lithium(alloy), Iron Disulfide Cells. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1309-1318	3.9	29	
126	Friction factors for creeping flow in sinusoidal periodically constricted tubes. <i>Chemical Engineering Science</i> , 1987 , 42, 2962-2963	4.4	3	
125	Current Oscillations Observed within the Limiting Current Plateau for Iron in Sulfuric Acid. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 2093-2097	3.9	46	
124	Corrosion of a Rotating Iron Disk in Laminar, Transition, and Fully Developed Turbulent Flow. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 37-42	3.9	10	
123	Anodic Dissolution of Iron in Acidic Sulfate Electrolytes: I . Formation and Growth of a Porous Salt Film. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 59-69	3.9	42	
122	The Kramers-Kronig Relations and Evaluation of Impedance for a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 1097-1101	3.9	8	
121	Experimental Investigation of a Porous Carbon Electrode for the Removal of Mercury from Contaminated Brine. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 1850-1859	3.9	61	
120	Photoelectrochemical Devices for Solar Energy Conversion. <i>Reviews of Physiology, Biochemistry and Pharmacology</i> , 1986 , 61-112	2.9	2	

119	The asymmetric Graetz problem in channel flow. <i>International Journal of Heat and Mass Transfer</i> , 1985 , 28, 503-505	4.9	6
118	Impedance Model for a Concentrated Solution: Application to the Electrodissolution of Copper in Chloride Solutions. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2780-2785	3.9	25
117	Mathematical Modeling of Liquid-Junction Photovoltaic Cells: III . Optimization of Cell Configurations. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2582-2588	3.9	7
116	Mathematical Modeling of Liquid-Junction Photovoltaic Cells: II . Effect of System Parameters on Current-Potential Curves. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2574-2582	3.9	4
115	Mathematical Modeling of Liquid-Junction Photovoltaic Cells: I . Governing Equations. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2569-2574	3.9	17
114	A Theoretical Comparison of Flow-Through and Flow-By Porous Electrodes at the Limiting Current. Journal of the Electrochemical Society, 1984 , 131, 2551-2556	3.9	13
113	Primary Current Distribution and Resistance of a Slotted-Electrode Cell. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2857-2861	3.9	13
112	Activity Coefficients of Electrons and Holes in Semiconductors. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2715-2717	3.9	5
111	Hydrodynamics and Mass Transfer in a Porous-Wall Channel. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 1828-1831	3.9	12
110	Extension of Newman Numerical Technique To Pentadiagonal Systems Of Equations 1984 , 377-389		4
109	Vapor-liquid equilibria for NH3 and H2O in the 100 to 150°C region: Effect of low levels of phenol on partial pressure of ammonia. <i>AICHE Journal</i> , 1983 , 29, 869-871	3.6	3
108	Analytic Expression of the Warburg Impedance for a Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1983 , 130, 822-824	3.9	26
107	The Modulated Flow at a Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1983 , 130, 20	1632,02	6 85
106	Experimental Determination of the Passive-Active Transition for Iron in 1M Sulfuric Acid. <i>Journal of the Electrochemical Society</i> , 1983 , 130, 547-553	3.9	41
105	Mass-transfer coefficients in packed beds at very low reynolds numbers. <i>International Journal of Heat and Mass Transfer</i> , 1982 , 25, 935-943	4.9	17
104	Mathematical Modeling of the Lithium-Aluminum, Iron Sulfide Battery: I . Galvanostatic Discharge Behavior. <i>Journal of the Electrochemical Society</i> , 1981 , 128, 491-502	3.9	46
103	A comparison between flow-through and flow-by porous electrodes for redox energy storage. <i>Electrochimica Acta</i> , 1981 , 26, 455-469	6.7	29
102	Characteristics of the dropping mercury electrode below the limiting current. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1981 , 129, 53-65		4

101	Mass transfer to rotating disks and rotating rings in laminar, transition and fully-developed turbulent flow. <i>International Journal of Heat and Mass Transfer</i> , 1981 , 24, 909-918	4.9	11
100	The Variation of Supporting Electrolyte Concentration in Impedance Studies at a Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1981 , 128, 1018-1022	3.9	
99	Mathematical Modeling of the Lithium-Aluminum, Iron Sulfide Battery: II . The Influence of Relaxation Time on the Charging Characteristics. <i>Journal of the Electrochemical Society</i> , 1981 , 128, 503-	507	10
98	On the Short Time Solution for the Concentration Step at the Surface of a Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1980 , 127, 2603-2604	3.9	3
97	Silicon Deposition on a Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1980 , 127, 744-752	3.9	64
96	The Warburg Impedance in the Presence of Convective Flow. <i>Journal of the Electrochemical Society</i> , 1980 , 127, 110-113	3.9	20
95	Optimization of potential and hydrogen utilization in an acid fuel cell. <i>Electrochimica Acta</i> , 1979 , 24, 223	3 <i>4</i> 2779	16
94	Corrosion of Iron-Based Alloys by Coal Char at 871° and 982°C. <i>Journal of the Electrochemical Society</i> , 1979 , 126, 894-902	3.9	O
93	Transport Equations for a Mixture of Two Binary Molten Salts in a Porous Electrode. <i>Journal of the Electrochemical Society</i> , 1979 , 126, 1713-1717	3.9	18
92	Potential Distribution for Disk Electrodes in Axisymmetric Cylindrical Cells. <i>Journal of the Electrochemical Society</i> , 1979 , 126, 1348-1352	3.9	8
91	A Model for the Anodic Dissolution of Iron in Sulfuric Acid. <i>Journal of the Electrochemical Society</i> , 1979 , 126, 2150-2155	3.9	17
90	Entrance region (Lŷq̃uelike) mass transfer coefficients in packed bed reactors. <i>AICHE Journal</i> , 1979 , 25, 1077-1080	3.6	12
89	Low Pclet number behavior of the transfer rate in packed beds. <i>Chemical Engineering Science</i> , 1978 , 33, 1043-1048	4.4	16
88	Numerical calculations for the asymptotic, diffusion dominated mass-transfer coefficient in packed bed reactors. <i>Chemical Engineering Science</i> , 1978 , 33, 1563-1566	4.4	4
87	Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. <i>AICHE Journal</i> , 1978 , 24, 966-976	3.6	577
86	Thermodynamics of Vapor-Liquid Equilibria for the Ammonia-Water System. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1978 , 17, 264-269		17
85	The Effect of Electrode Placement and Finite Matrix Conductivity on the Performance of Flow-Through Porous Electrodes. <i>Journal of the Electrochemical Society</i> , 1978 , 125, 58-68	3.9	18
84	Ring Electrodes. <i>Journal of the Electrochemical Society</i> , 1978 , 125, 79-84	3.9	9

83	Potential-Selective Deposition of Copper from Chloride Solutions Containing Iron. <i>Journal of the Electrochemical Society</i> , 1977 , 124, 669-676	3.9	14
82	Electrochemical Removal of Silver Ions from Photographic Fixing Solutions Using a Porous Flow-Through Electrode. <i>Journal of the Electrochemical Society</i> , 1977 , 124, 706-708	3.9	30
81	Radially Dependent Corrective Warburg Problem for a Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1977 , 124, 1864-1868	3.9	7
80	A Flow-Through Porous Electrode Model: Application to Metal-Ion Removal from Dilute Streams. Journal of the Electrochemical Society, 1977 , 124, 1528-1540	3.9	88
79	Current Distribution on a Rotating Ring-Disk Electrode below the Limiting Current. <i>Journal of the Electrochemical Society</i> , 1977 , 124, 701-706	3.9	7
78	Effect of Diffusional Resistance upon Gas Chromatography in Capillary Columns. <i>Macromolecules</i> , 1977 , 10, 609-615	5.5	3
77	Simultaneous reactions on a rotating-disk electrode. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1977 , 82, 173-186		13
76	Potential distribution in a corroding pit. <i>Electrochimica Acta</i> , 1977 , 22, 829-831	6.7	28
75	Simultaneous reactions at disk and porous electrodes. <i>Electrochimica Acta</i> , 1977 , 22, 903-911	6.7	9
74	Mass transfer at high Ptlet numbers for creeping flow in a packed-bed reactor. <i>AICHE Journal</i> , 1977 , 23, 255-263	3.6	47
73	Engineering Analysis of Shape Change in Zinc Secondary Electrodes: I . Theoretical. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1616-1627	3.9	47
72	The Fluid Motion Due to a Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 383-385	3.9	21
71	Mass Transfer to a Rotating Disk in Transition Flow. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1687-1691	3.9	32
7º	The effect of surfactant on the terminal and interfacial velocities of a bubble or drop. <i>AICHE Journal</i> , 1976 , 22, 695-701	3.6	81
69	Application of the limiting current method to mass transfer in packed beds at very low reynolds numbers. <i>AICHE Journal</i> , 1976 , 22, 979-984	3.6	31
68	Current and Potential Distributions in Plating Corrosion Systems. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1423-1432	3.9	8
67	Analysis of Porous Electrodes with Sparingly Soluble Reactants: III . Short Time Transients. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1364-1370	3.9	7
66	Current Distribution on a Disk Electrode for Redox Reactions. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 366-369	3.9	11

65	Primary Resistances for Ring-Disk Electrodes. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1030-1	0369	17	
64	Engineering Analysis of Shape Change in Zinc Secondary Electrodes: II . Experimental. <i>Journal of the Electrochemical Society</i> , 1976 , 123, 1628-1637	3.9	34	
63	Porous-electrode theory with battery applications. AICHE Journal, 1975, 21, 25-41	3.6	749	
62	Thermodynamics of aqueous solutions containing volatile weak electrolytes. <i>AICHE Journal</i> , 1975 , 21, 248-259	3.6	108	
61	Maximum droplet growth when cooling a saturated solution. <i>Chemical Engineering Science</i> , 1975 , 30, 563-566	4.4	3	
60	Maximum Effective Capacity in an Ohmically Limited Porous Electrode. <i>Journal of the Electrochemical Society</i> , 1975 , 122, 1482-1485	3.9	48	
59	Double-Layer Capacity Determination of Porous Electrodes. <i>Journal of the Electrochemical Society</i> , 1975 , 122, 70-74	3.9	31	
58	Mass Transfer to an Eccentric Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1975 , 122, 928-931	3.9	18	
57	Fluid flow in a propagating crack. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1974 , 5, 469-474		9	
56	An Asymptotic Solution for the Warburg Impedance of a Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1974 , 121, 521	3.9	18	
55	Current Distribution on a Rotating Sphere below the Limiting Current. <i>Journal of the Electrochemical Society</i> , 1974 , 121, 241	3.9	7	
54	Mass Transfer of Minor Components in a Propagating Crack. <i>Journal of the Electrochemical Society</i> , 1974 , 121, 1000	3.9	3	
53	Current Distribution on a Plane below a Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1974 , 121, 1448	3.9	5	
52	The Short-Time Response of a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1974 , 121, 523	3.9	13	
51	Transient convective diffusion to a disk electrode. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1974 , 50, 23-29		18	
50	Mass transfer in cylindrical couette flow. <i>Electrochimica Acta</i> , 1973 , 18, 761-764	6.7	8	
49	Restricted diffusion in binary solutions. AICHE Journal, 1973, 19, 343-348	3.6	83	
48	Diffusion in aqueous nitric acid solutions. <i>AICHE Journal</i> , 1973 , 19, 797-801	3.6	17	

47	Mass transfer to a plane below a rotating disk at high Schmidt numbers. AICHE Journal, 1973, 19, 929-93	3 3 .6	4
46	The Error in Measurements of Electrode Kinetics Caused by Nonuniform Ohmic-Potential Drop to a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1973 , 120, 256	3.9	10
45	The Transient Response of a Disk Electrode with Controlled Potential. <i>Journal of the Electrochemical Society</i> , 1973 , 120, 1356	3.9	12
44	Analysis of Porous Electrodes with Sparingly Soluble Reactants. <i>Journal of the Electrochemical Society</i> , 1973 , 120, 906	3.9	23
43	Potential Distribution in Axisymmetric Mercury-Pool Electrolysis Cells at the Limiting Current. Journal of the Electrochemical Society, 1973 , 120, 1041	3.9	2
42	The Transient Response of a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1973 , 120, 1339	3.9	32
41	Corrosion of an Iron Rotating Disk. <i>Journal of the Electrochemical Society</i> , 1973 , 120, 1682	3.9	12
40	Detection of Nonuniform Current Distribution on a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1972 , 119, 208	3.9	18
39	Ring-Disk and Sectioned Disk Electrodes. Journal of the Electrochemical Society, 1972, 119, 212	3.9	13
38	Mass Transfer to a Rotating Sphere at High Schmidt Numbers. <i>Journal of the Electrochemical Society</i> , 1972 , 119, 69	3.9	11
37	Growing Porous Layers. Journal of the Electrochemical Society, 1972, 119, 186	3.9	2
36	Electrochemical removal of copper ions from very dilute solutions. <i>Journal of Applied Electrochemistry</i> , 1972 , 2, 113-122	2.6	318
35	Desalting by Means of Porous Carbon Electrodes. <i>Journal of the Electrochemical Society</i> , 1971 , 118, 510	3.9	257
34	High Sc Limit of Free Convection at a Vertical Plate With Uniform Flux Condition. <i>Journal of Heat Transfer</i> , 1971 , 93, 465-466	1.8	6
33	The Role of Bisulfate Ions in Ionic Migration Effects. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1971 , 10, 615-620		22
32	Rapid aging and dynamic surface tension of dilute aqueous solutions. <i>Chemical Engineering Science</i> , 1971 , 26, 817-827	4.4	37
31	Limiting Current on a Rotating Disk with Radial Diffusion. <i>Journal of the Electrochemical Society</i> , 1971 , 118, 1079	3.9	29
30	Analysis of Porous Electrodes with Sparingly Soluble Reactants. <i>Journal of the Electrochemical Society</i> , 1971 , 118, 1251	3.9	23

29	Free-Convection Mass Transfer with a Supporting Electrolyte. <i>Journal of the Electrochemical Society</i> , 1971 , 118, 1070	3.9	72
28	Ohmic Potential Measured by Interrupter Techniques. <i>Journal of the Electrochemical Society</i> , 1970 , 117, 507	3.9	42
27	Frequency Dispersion in Capacity Measurements at a Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1970 , 117, 198	3.9	107
26	The Approach to Limiting Current in a Stagnant Diffusion Cell. <i>Journal of the Electrochemical Society</i> , 1970 , 117, 1242	3.9	4
25	Currents Limited by Gas Solubility. Industrial & Engineering Chemistry Fundamentals, 1970, 9, 677-679		4
24	Current Distributions on Plane, Parallel Electrodes in Channel Flow. <i>Journal of the Electrochemical Society</i> , 1970 , 117, 43	3.9	56
23	Current Distribution on a Plane Electrode below the Limiting Current. <i>Journal of the Electrochemical Society</i> , 1969 , 116, 169	3.9	29
22	Extension of the Le©veQue Solution. <i>Journal of Heat Transfer</i> , 1969 , 91, 177-178	1.8	50
21	Current Distribution on a Rotating Disk Electrode. <i>Journal of the Electrochemical Society</i> , 1969 , 116, 17	04 .9	27
20	Migration in rapid double-layer charging. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 1843-1848		8
20	Migration in rapid double-layer charging. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 1843-1848 Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557		8
	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry</i>		
19	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557 Moving boundary measurement of transference numbers. <i>The Journal of Physical Chemistry</i> , 1969 ,		8
19	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557 Moving boundary measurement of transference numbers. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 298-303		8
19 18 17	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557 Moving boundary measurement of transference numbers. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 298-303 Potentials of cells with liquid junctions. <i>The Journal of Physical Chemistry</i> , 1968 , 72, 4660-4671 Numerical Solution of Coupled, Ordinary Differential Equations. <i>Industrial & Engineering Chemistry</i>		8 5 27
19 18 17 16	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557 Moving boundary measurement of transference numbers. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 298-303 Potentials of cells with liquid junctions. <i>The Journal of Physical Chemistry</i> , 1968 , 72, 4660-4671 Numerical Solution of Coupled, Ordinary Differential Equations. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1968 , 7, 514-517 ENGINEERING DESIGN OF ELECTROCHEMICAL SYSTEMS. <i>Industrial and Engineering Chemistry</i> , 1968 ,	3.9	8 5 27 82
19 18 17 16	Mass Transfer to Rear of Cylinder at High Schmidt Numbers. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1969 , 8, 553-557 Moving boundary measurement of transference numbers. <i>The Journal of Physical Chemistry</i> , 1969 , 73, 298-303 Potentials of cells with liquid junctions. <i>The Journal of Physical Chemistry</i> , 1968 , 72, 4660-4671 Numerical Solution of Coupled, Ordinary Differential Equations. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1968 , 7, 514-517 ENGINEERING DESIGN OF ELECTROCHEMICAL SYSTEMS. <i>Industrial and Engineering Chemistry</i> , 1968 , 60, 12-27	3.9	8 5 27 82 76

11	The effect of migration in laminar diffusion layers. <i>International Journal of Heat and Mass Transfer</i> , 1967 , 10, 983-997	4.9	29	
10	Retardation of falling drops. Chemical Engineering Science, 1967, 22, 83-85	4.4	31	
9	Note. The kouteck[correction to the ilkovilequation. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1967 , 15, 309-312		31	
8	Schmidt Number Correction for the Rotating Disk. <i>The Journal of Physical Chemistry</i> , 1966 , 70, 1327-13	28	171	
7	Resistance for Flow of Current to a Disk. <i>Journal of the Electrochemical Society</i> , 1966 , 113, 501	3.9	529	
6	Current Distribution on a Rotating Disk below the Limiting Current. <i>Journal of the Electrochemical Society</i> , 1966 , 113, 1235	3.9	170	
5	Blasius series for heat and mass transfer. <i>International Journal of Heat and Mass Transfer</i> , 1966 , 9, 705-	70 9	7	
4	Effect of Ionic Migration on Limiting Currents. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1966 , 5, 525-529		47	
3	Mass Transfer in Concentrated Binary Electrolytes. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1965 , 69, 608-612		44	
2	The polarized diffuse double layer. <i>Transactions of the Faraday Society</i> , 1965 , 61, 2229		46	
1	The Transference Number. Energy and Environmental Materials,	13	2	