Andrew J Schuler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829853/publications.pdf Version: 2024-02-01

ANDREWISCHILLER

#	Article	IF	CITATIONS
1	Effects of Methyl, Ester, and Amine Surface Groups on Microbial Activity and Communities in Nitrifying Biofilms. ACS Applied Bio Materials, 2022, , .	2.3	2
2	Effects of surface skewness on local shear stresses, biofilm activity, and microbial communities for wastewater treatment. Bioresource Technology, 2021, 320, 124251.	4.8	7
3	Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology, 2019, 31, 3349-3358.	1.5	14
4	Performance and diversity responses of nitrifying biofilms developed on varied materials and topographies to stepwise increases of aeration. Bioresource Technology, 2019, 281, 429-439.	4.8	12
5	Effects of salinity and nitrogen source on growth and lipid production for a wild algal polyculture in produced water media. Algal Research, 2019, 38, 101406.	2.4	22
6	Community and Performance Responses of Nitrifying Biofilms Grown on Surfaces with Varying Characteristics to Changes in Shear. Proceedings of the Water Environment Federation, 2018, 2018, 2272-2281.	0.0	0
7	Mass Transfer and Mixing in Wastewater Treatment Biofilms. Proceedings of the Water Environment Federation, 2017, 2017, 541-545.	0.0	Ο
8	Application of Increased Shear Force on Mature Steady State Nitrifying Biofilms Grown on Modified 3-D Printed Surfaces. Proceedings of the Water Environment Federation, 2017, 2017, 554-570.	0.0	0
9	Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR. Water Science and Technology, 2016, 74, 110-117.	1.2	17
10	Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of <i>Shewanella oneidensis</i> MR-1. Biointerphases, 2016, 11, 011003.	0.6	23
11	High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application. Scientific Reports, 2015, 5, 16596.	1.6	82
12	Doubleâ€Chamber Microbial Fuel Cell with a Nonâ€Platinumâ€Group Metal Fe–N–C Cathode Catalyst. ChemSusChem, 2015, 8, 828-834.	3.6	75
13	Relationship between surface chemistry, biofilm structure, and electron transfer in <i>Shewanella</i> anodes. Biointerphases, 2015, 10, 019013.	0.6	42
14	Surface Modification for Enhanced Biofilm Formation and Electron Transport in Shewanella Anodes. Journal of the Electrochemical Society, 2015, 162, H597-H603.	1.3	57
15	Influence of anode surface chemistry on microbial fuel cell operation. Bioelectrochemistry, 2015, 106, 141-149.	2.4	88
16	A Simplified Ammonia Mass Transfer Model for MBBRs. Proceedings of the Water Environment Federation, 2015, 2015, 3679-3692.	0.0	0
17	The effects of wastewater types on power generation and phosphorus removal of microbial fuel cells (MFCs) with activated carbon (AC) cathodes. International Journal of Hydrogen Energy, 2014, 39, 21796-21802.	3.8	28
18	Surface Modification of Microbial Fuel Cells Anodes: Approaches to Practical Design. Electrochimica Acta, 2014, 134, 116-126.	2.6	89

ANDREW J SCHULER

#	Article	IF	CITATIONS
19	Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 2014, 163, 54-63.	4.8	102
20	Attachment surface energy effects on nitrification and estrogen removal rates by biofilms for improved wastewater treatment. Water Research, 2013, 47, 2190-2198.	5.3	45
21	Low Acetate Concentrations Favor Polyphosphate-Accumulating Organisms over Glycogen-Accumulating Organisms in Enhanced Biological Phosphorus Removal from Wastewater. Environmental Science & Technology, 2013, 47, 3816-3824.	4.6	84
22	Applied Electrode Potential Leads to <i>Shewanella oneidensis</i> MR-1 Biofilms Engaged in Direct Electron Transfer. Journal of the Electrochemical Society, 2013, 160, H866-H871.	1.3	13
23	Metabolisms of Acetate Transport in EBPR and Biokinetics for PAOs and Gaos. Proceedings of the Water Environment Federation, 2013, 2013, 758-770.	0.0	0
24	Role of Changing Biomass Density in Process Disruptions Affecting Biomass Settling at a Full-Scale Domestic Wastewater Treatment Plant. Journal of Environmental Engineering, ASCE, 2012, 138, 67-73.	0.7	6
25	Experimental and Theoretical Examination of Surface Energy and Adhesion of Nitrifying and Heterotrophic Bacteria Using Self-Assembled Monolayers. Environmental Science & Technology, 2011, 45, 1055-1060.	4.6	54
26	Acetate Concentration Effects on EBPR: Is GAO Competition Over-Stated Because of Lab Conditions?. Proceedings of the Water Environment Federation, 2011, 2011, 78-83.	0.0	0
27	Comparison of Conventional and Integrated Fixedâ€Film Activated Sludge Systems: Attached―and Suspendedâ€Growth Functions and Quantitative Polymerase Chain Reaction Measurements. Water Environment Research, 2011, 83, 627-635.	1.3	43
28	Is the whole the sumof its parts? Agent-basedmodelling of wastewater treatment systems. Water Science and Technology, 2011, 63, 1590-1598.	1.2	10
29	Shelter From The Storm: Integrated Fixed Film Activated Sludge Protects Nitrifiers From Toxic Upsets. Proceedings of the Water Environment Federation, 2010, 2010, 679-685.	0.0	1
30	Ultraviolet treatment and biodegradation of dibenzothiophene: Identification and toxicity of products. Environmental Toxicology and Chemistry, 2010, 29, 2409-2416.	2.2	16
31	Seasonal variability of biomass density and activated sludge settleability in full-scale wastewater treatment systems. Chemical Engineering Journal, 2010, 164, 16-22.	6.6	38
32	Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Research, 2010, 44, 1553-1561.	5.3	94
33	It's Getting Clearer: A New View of Seasonal Changes in Secondary Sedimentation Linked to Variable Biomass Density. Proceedings of the Water Environment Federation, 2009, 2009, 4057-4064.	0.0	0
34	How Does IFAS Affect Distributions of AOB and NOB Communities? Population Measurements and Modeling of Pilot Scale Systems. Proceedings of the Water Environment Federation, 2009, 2009, 2349-2358.	0.0	0
35	Trace Organic Chemical Profiles in Nutrient Removal Systems With and Without Integrated Fixed Film Activated Sludge. Proceedings of the Water Environment Federation, 2009, 2009, 704-711.	0.0	3
36	Predicted Distributed State Effects on Enhanced Biological Phosphorus Removal in a 5‣tage Bardenpho Wastewater Treatment Configuration. Water Environment Research, 2008, 80, 454-463.	1.3	4

ANDREW J SCHULER

#	Article	IF	CITATIONS
37	A Net Water Production Model for Ultrafiltration Including Flow Direction Reversal and Chemically Assisted Backwashing. Water Environment Research, 2007, 79, 877-886.	1.3	1
38	The Case for Variable Density: A New Perspective on Activated Sludge Settling. Water Environment Research, 2007, 79, 2298-2303.	1.3	11
39	A New View of the Relationship Between Filament Content and Activated Sludge Settleability. Proceedings of the Water Environment Federation, 2007, 2007, 1474-1475.	0.0	0
40	IMPROVING PREDICTIONS OF COMPLEX EBPR CONFIGURATION PERFORMANCE USING THE DISTRIBUTED STATE APPROACH. Proceedings of the Water Environment Federation, 2007, 2007, 1256-1269.	0.0	0
41	Microsphere addition for the study of biomass properties and density effects on settleability in biological wastewater treatment systems. Water Research, 2007, 41, 2163-2170.	5.3	18
42	Density effects on activated sludge zone settling velocities. Water Research, 2007, 41, 1814-1822.	5.3	35
43	Filament content threshold for activated sludge bulking: Artifact or reality?. Water Research, 2007, 41, 4349-4356.	5.3	39
44	Causes of Variable Biomass Density and Its Effects on Settleability in Full-Scale Biological Wastewater Treatment Systems. Environmental Science & Technology, 2007, 41, 1675-1681.	4.6	39
45	Pipeline to the Future: Critical Success Factors in Attracting, Developing, and Retaining Your Future Water Quality Leaders. Water Environment Research, 2007, 79, 2251-2252.	1.3	0
46	Distributed state simulation of endogenous processes in biological wastewater treatment. Biotechnology and Bioengineering, 2007, 97, 1087-1097.	1.7	8
47	Pipeline to the future: critical success factors in attracting, developing, and retaining your future water quality leaders. Water Environment Research, 2007, 79, 2251-2.	1.3	0
48	What are Distributed States and when are they Important? New Strategies to Improve EBPR Performance. Proceedings of the Water Environment Federation, 2006, 2006, 4873-4883.	0.0	0
49	The Case for Variable Density: A New Perspective on Activated Sludge Settling. Proceedings of the Water Environment Federation, 2006, 2006, 49-61.	0.0	0
50	Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater. Biotechnology and Bioengineering, 2006, 94, 909-920.	1.7	9
51	A STEP CLOSER TO REALITY: NEW DEVELOPMENTS IN PREDICTING DISTRIBUTED PAO STATES FOR ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL. Proceedings of the Water Environment Federation, 2005, 2005, 3887-3888.	0.0	0
52	Diversity matters: Dynamic simulation of distributed bacterial states in suspended growth biological wastewater treatment systems. Biotechnology and Bioengineering, 2005, 91, 62-74.	1.7	35
53	Enhanced Biological Phosphorus Removal from Wastewater by Biomass with Different Phosphorus Contents, Part III: Anaerobic Sources of Reducing Equivalents. Water Environment Research, 2003, 75, 512-522.	1.3	31
54	Enhanced Biological Phosphorus Removal from Wastewater by Biomass with Different Phosphorus Contents, Part I: Experimental Results and Comparison with Metabolic Models. Water Environment Research, 2003, 75, 485-498.	1.3	136

#	Article	IF	CITATIONS
55	Enhanced Biological Phosphorus Removal from Wastewater by Biomass with Different Phosphorus Contents, Part II: Anaerobic Adenosine Triphosphate Utilization and Acetate Uptake Rates. Water Environment Research, 2003, 75, 499-511.	1.3	25
56	Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Water Research, 1999, 33, 462-476.	5.3	44