Tianyi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829574/publications.pdf Version: 2024-02-01

TIANVI ZHANC

#	Article	IF	CITATIONS
1	Effects of chilling at the booting and flowering stages on rice phenology and yield: A case study in Northeast China. Journal of Agronomy and Crop Science, 2022, 208, 197-208.	1.7	7
2	Ozone pollution threatens the production of major staple crops in East Asia. Nature Food, 2022, 3, 47-56.	6.2	93
3	Mitigation of air pollutant impacts on rice yields in China by sector. Environmental Research Letters, 2022, 17, 054037.	2.2	5
4	Does ENSO strongly affect rice yield and water application in Northeast China?. Agricultural Water Management, 2021, 245, 106605.	2.4	8
5	Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agricultural and Forest Meteorology, 2021, 296, 108227.	1.9	29
6	Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. Earth System Dynamics, 2021, 12, 151-172.	2.7	30
7	Modeling the joint impacts of ozone and aerosols on crop yields in China: An air pollution policy scenario analysis. Atmospheric Environment, 2021, 247, 118216.	1.9	17
8	Modelling the advancement of chilling tolerance breeding in Northeast China. Journal of Agronomy and Crop Science, 2021, 207, 984-994.	1.7	5
9	Reduced impacts of heat extremes from limiting global warming to under 1.5 °C or 2 °C over Mediterranean regions. Environmental Research Letters, 2021, 16, 014034.	2.2	7
10	Guidelines for Studying Diverse Types of Compound Weather and Climate Events. Earth's Future, 2021, 9, e2021EF002340.	2.4	66
11	Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia. Sustainability, 2021, 13, 12480.	1.6	6
12	Separate parameterization of pre- and post-flowering phases as a solution to minimize simulation bias trends in rice phenology with climate warming. Field Crops Research, 2020, 245, 107672.	2.3	5
13	Pathway dependence of ecosystem responses in China to 1.5 °C global warming. Atmospheric Chemistry and Physics, 2020, 20, 2353-2366.	1.9	9
14	Modelling rice growth and grain yield in rice ratooning production system. Field Crops Research, 2019, 241, 107574.	2.3	13
15	Potential Influence of Climate Change on Grain Self‣ufficiency at the Country Level Considering Adaptation Measures. Earth's Future, 2019, 7, 1152-1166.	2.4	13
16	Seasonal variability in potential and actual yields of winter wheat in China. Field Crops Research, 2019, 240, 1-11.	2.3	17
17	Impacts of Sulfate Geoengineering on Rice Yield in China: Results From a Multimodel Ensemble. Earth's Future, 2019, 7, 395-410.	2.4	7
18	Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Weather and Climate Extremes, 2019, 23, 100197.	1.6	9

TIANYI ZHANG

#	Article	IF	CITATIONS
19	Climate effects of stringent air pollution controls mitigate future maize losses in China. Environmental Research Letters, 2018, 13, 124011.	2.2	11
20	Rice yield potential, gaps and constraints during the past three decades in a climate-changing Northeast China. Agricultural and Forest Meteorology, 2018, 259, 173-183.	1.9	32
21	Extreme weather, food security and the capacity to adapt – the case of crops in China. Food Security, 2017, 9, 523-535.	2.4	26
22	Impacts of aerosol pollutant mitigation on lowland rice yields in China. Environmental Research Letters, 2017, 12, 104003.	2.2	22
23	Extreme Weather Impacts on Maize Yield: The Case of Shanxi Province in China. Sustainability, 2017, 9, 41.	1.6	9
24	Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China. Sustainability, 2017, 9, 851.	1.6	10
25	Mapping Chinese Rice Suitability to Climate Change. Journal of Agricultural Science, 2016, 8, 33.	0.1	4
26	Model biases in rice phenology under warmer climates. Scientific Reports, 2016, 6, 27355.	1.6	16
27	Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas. Science of the Total Environment, 2016, 550, 851-860.	3.9	20
28	Adaptation of Irrigation Infrastructure on Irrigation Demands under Future Drought in the United States*. Earth Interactions, 2015, 19, 1-16.	0.7	8
29	Trend Patterns of Vegetative Coverage and Their Underlying Causes in the Deserts of Northwest China over 1982 – 2008. PLoS ONE, 2015, 10, e0126044.	1.1	3
30	Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Science of the Total Environment, 2015, 508, 331-342.	3.9	64
31	Climatic and technological ceilings for <scp>C</scp> hinese rice stagnation based on yield gaps and yield trend pattern analysis. Global Change Biology, 2014, 20, 1289-1298.	4.2	77
32	Climate change impacts on crop yield: Evidence from China. Science of the Total Environment, 2014, 499, 133-140.	3.9	53
33	Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 2014, 59, 1-12.	1.9	84
34	Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. International Journal of Climatology, 2013, 33, 699-708.	1.5	54
35	A Bayesian assessment of the current irrigation water supplies capacity under projected droughts for the 2030s in China. Agricultural and Forest Meteorology, 2013, 178-179, 56-65.	1.9	18
36	Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biology, 2013, 19, 563-570.	4.2	150

Tianyi Zhang

#	Article	IF	CITATIONS
37	Impacts of climate change and interâ€annual variability on cereal crops in China from 1980 to 2008. Journal of the Science of Food and Agriculture, 2012, 92, 1643-1652.	1.7	96
38	Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2011, 151, 1545-1555.	1.9	77
39	The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467, 43-51.	13.7	2,656
40	Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981–2005). Agricultural and Forest Meteorology, 2010, 150, 1128-1137.	1.9	137
41	Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrigation Science, 2008, 26, 459-474.	1.3	42
42	Correlation changes between rice yields in North and Northwest China and ENSO from 1960 to 2004. Agricultural and Forest Meteorology, 2008, 148, 1021-1033.	1.9	49
43	Non-stationary thermal time accumulation reduces the predictability of climate change effects on agriculture. Agricultural and Forest Meteorology, 2008, 148, 1412-1418.	1.9	46
44	Impacts of chilling at the tillering phases on rice growth and grain yield in Northeast China. Journal of Agronomy and Crop Science, 0, , .	1.7	1