Ankit A Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1–7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovascular Drugs and Therapy, 2022, 36, 363-370.	1.3	9
2	Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension. European Respiratory Journal, 2022, 59, 2002463.	3.1	31
3	Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers. Pharmacogenomics Journal, 2022, 22, 62-68.	0.9	3
4	eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Scientific Reports, 2022, 12, 696.	1.6	23
5	Editorial: Pathophysiology and Pathogenic Mechanisms of Pulmonary Vascular Disease. Frontiers in Physiology, 2022, 13, 854265.	1.3	0
6	Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Translational Research, 2022, 247, 1-18.	2.2	6
7	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	2.5	19
8	Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. European Respiratory Journal, 2021, 57, 2002536.	3.1	53
9	IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood, 2021, 137, 1208-1218.	0.6	22
10	Lisofylline mitigates cardiac inflammation in a mouse model of obesity through improving insulin secretion and activating cardiac AMPK signaling pathway. Cytokine, 2021, 138, 155398.	1.4	2
11	Reply to Non and Chang: Challenging the Role of Genetic Ancestry in Explaining Racial/Ethnic Health Disparities. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 398-399.	2.5	0
12	Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2021, 1303, 275-303.	0.8	18
13	NHLBI-CMREF Workshop Report on Pulmonary Vascular DiseaseÂClassification. Journal of the American College of Cardiology, 2021, 77, 2040-2052.	1.2	13
14	UCHL1, a deubiquitinating enzyme, regulates lung endothelial cell permeability in vitro and in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L497-L507.	1.3	15
15	At a crossroads: coronavirus disease 2019 recovery and the risk of pulmonary vascular disease. Current Opinion in Pulmonary Medicine, 2021, 27, 342-349.	1.2	9
16	Cox-sMBPLS: An Algorithm for Disease Survival Prediction and Multi-Omics Module Discovery Incorporating Cis-Regulatory Quantitative Effects. Frontiers in Genetics, 2021, 12, 701405.	1.1	2
17	Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 719058.	1.1	15
18	Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2021, 321, C1010-C1027.	2.1	29

#	Article	IF	CITATIONS
19	Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPTâ€neutralizing mAb. Pulmonary Circulation, 2021, 11, 1-14.	0.8	13
20	Combination Therapy With Rapamycin and Low Dose Imatinib in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 758763.	1.6	5
21	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	5.8	21
22	Surfing the right ventricular pressure waveform: methods to assess global, systolic and diastolic RV function from a clinical right heart catheterization. Pulmonary Circulation, 2020, 10, 1-11.	0.8	18
23	Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes. Pulmonary Circulation, 2020, 10, 1-5.	0.8	11
24	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	2.5	45
25	Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 92-103.	1.4	39
26	Genetic Admixture and Survival in Diverse Populations with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1407-1415.	2.5	18
27	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	3.1	26
28	Imaging assessment of cardioprotection mediated by a dodecafluoropentane oxygen-carrier administered during myocardial infarction. Nuclear Medicine and Biology, 2019, 70, 67-77.	0.3	7
29	American Society of Hematology 2019 guidelines for sickle cell disease: cardiopulmonary and kidney disease. Blood Advances, 2019, 3, 3867-3897.	2.5	87
30	End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain. Blood Advances, 2019, 3, 3982-4001.	2.5	51
31	End points for sickle cell disease clinical trials: renal and cardiopulmonary, cure, and low-resource settings. Blood Advances, 2019, 3, 4002-4020.	2.5	21
32	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	5.2	122
33	Gender Difference in Damage-Mediated Signaling Contributes to Pulmonary Arterial Hypertension. Antioxidants and Redox Signaling, 2019, 31, 917-932.	2.5	19
34	Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxidants and Redox Signaling, 2019, 31, 819-842.	2.5	27
35	Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L216-L228.	1.3	41
36	Endothelial HIF-2α Contributes to Severe Pulmonary Hypertension by Inducing Endothelial-to-Mesenchymal Transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00096.2.	1.3	121

#	Article	IF	CITATIONS
37	Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 334-345.	1.4	33
38	Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. American Journal of Medicine, 2018, 131, 702.e7-702.e13.	0.6	20
39	Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respiratory Research, 2018, 19, 69.	1.4	27
40	Endothelial nitric oxide synthase genotype is associated with pulmonary hypertension severity in left heart failure patients. Pulmonary Circulation, 2018, 8, 1-8.	0.8	10
41	Hypoxia-Inducible PIM Kinase Expression Promotes Resistance to Antiangiogenic Agents. Clinical Cancer Research, 2018, 24, 169-180.	3.2	40
42	LPS-induced Acute Lung Injury Involves NF-κB–mediated Downregulation of SOX18. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 614-624.	1.4	59
43	Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic To Translational Science, 2018, 3, 744-762.	1.9	47
44	Right ventricular afterload predicts longâ€ŧerm transition from parenteral to oral treprostinil in pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-8.	0.8	5
45	New cases of Glucose-6-Phosphate Dehydrogenase deficiency in Pulmonary Arterial Hypertension. PLoS ONE, 2018, 13, e0203493.	1.1	19
46	Hyper-activation of pp60 Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radical Biology and Medicine, 2017, 102, 217-228.	1.3	9
47	Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L452-L476.	1.3	71
48	Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L297-L308.	1.3	36
49	Association of circulating transcriptomic profiles with mortality in sickle cell disease. Blood, 2017, 129, 3009-3016.	0.6	22
50	Capsaicin-induced Ca ²⁺ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L309-L325.	1.3	30
51	How prostacyclin therapy improves right ventricular function in pulmonary arterial hypertension. European Respiratory Journal, 2017, 50, 1700764.	3.1	36
52	Anti-inflammatory properties of amniotic membrane patch following pericardiectomy for constrictive pericarditis. Journal of Cardiothoracic Surgery, 2017, 12, 6.	0.4	15
53	Genome-Wide Analysis Identifies IL-18 and FUCA2 as Novel Genes Associated with Diastolic Function in African Americans with Sickle Cell Disease. PLoS ONE, 2016, 11, e0163013.	1.1	11
54	Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L846-L859.	1.3	69

#	Article	IF	CITATIONS
55	Endotoxin―and Mechanical Stress–Induced Epigenetic Changes in the Regulation of the Nicotinamide Phosphoribosyltransferase Promoter. Pulmonary Circulation, 2016, 6, 539-544.	0.8	23
56	Genetic Insights into Pulmonary Arterial Hypertension. Application of Whole-Exome Sequencing to the Study of Pathogenic Mechanisms. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 393-397.	2.5	11
57	Association of Impaired Glucose Regulation and Insulin Resistance With Cardiac Structure and Function. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	29
58	Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70–Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 275-287.	1.4	8
59	Comparison of Echocardiographic Measures in a Hispanic/Latino Population With the 2005 and 2015 American Society of Echocardiography Reference Limits (The Echocardiographic Study of Latinos). Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	20
60	Abnormalities in aortic properties: a potential link between left ventricular diastolic function and ventricular—aortic coupling in sickle cell disease. International Journal of Cardiovascular Imaging, 2016, 32, 965-973.	0.7	1
61	Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS ONE, 2016, 11, e0150480.	1.1	44
62	Associations of Prolonged QTc in Sickle Cell Disease. PLoS ONE, 2016, 11, e0164526.	1.1	20
63	Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1420-L1429.	1.3	14
64	Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox Biology, 2015, 6, 278-286.	3.9	71
65	Regression of Cardiac Amyloidosis After Stem Cell Transplantation Assessed by Cardiovascular Magnetic Resonance Imaging. Circulation, 2014, 129, 2326-2328.	1.6	18
66	Hypoxic Response Contributes to Altered Gene Expression and Precapillary Pulmonary Hypertension in Patients With Sickle Cell Disease. Circulation, 2014, 129, 1650-1658.	1.6	32
67	Mechanistic Insights and Characterization of Sickle Cell Disease–Associated Cardiomyopathy. Circulation: Cardiovascular Imaging, 2014, 7, 430-437.	1.3	47
68	Enhanced Risk Profiling of Implanted Defibrillator Shocks With Circulating SCN5A mRNA Splicing Variants. Journal of the American College of Cardiology, 2014, 63, 2261-2269.	1.2	19
69	ARTS: automated randomization of multiple traits for study design. Bioinformatics, 2014, 30, 1637-1639.	1.8	6
70	Feasibility of Implementing a Comprehensive Warfarin Pharmacogenetics Service. Pharmacotherapy, 2013, 33, 1156-1164.	1.2	70
71	Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 89.	1.6	65
72	Association of Aldosterone Synthase Polymorphism (CYP11B2 -344T>C) and Genetic Ancestry with Atrial Fibrillation and Serum Aldosterone in African Americans with Heart Failure. PLoS ONE, 2013, 8, e71268.	1.1	14

#	Article	IF	CITATIONS
73	Genetic Association Of a MAPK8 Expression Quantitative Trait Locus With Pre-Capillary Pulmonary Hypertension In Sickle Cell Disease. Blood, 2013, 122, 991-991.	0.6	0
74	Are Men at Risk? The Role of Testosterone in Cardiovascular Morbidity. Pulmonary Circulation, 2012, 2, 275-277.	0.8	1
75	A Novel Molecular Signature for Elevated Tricuspid Regurgitation Velocity in Sickle Cell Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 359-368.	2.5	39
76	Diagnostic and Therapeutic Algorithm for Pulmonary Arterial Hypertension. Pulmonary Circulation, 2011, 1, 122-124.	0.8	10
77	Survival in Pulmonary Arterial Hypertension: A Brief Review of Registry Data. Pulmonary Circulation, 2011, 1, 430-431.	0.8	18
78	Metabolomics and Atherosclerosis. Current Atherosclerosis Reports, 2010, 12, 267-272.	2.0	52
79	Integrating genomic and clinical medicine: Searching for susceptibility genes in complex lung diseases. Translational Research, 2008, 151, 181-193.	2.2	13
80	Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiological Genomics, 2008, 33, 278-291.	1.0	100
81	Use of consomic rats for genomic insights into ventilator-associated lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, 1292-1302	1.3	43