
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829062/publications.pdf Version: 2024-02-01

7ηι Υλης

1	Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano, 2012, 6, 205-211.	7.3	1,783
2	Plasmonic Wood for High‣fficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701028.	10.2	701
3	A Lightweight TiO ₂ /Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 2891-2898.	11.1	667
4	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	11.1	584
5	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	11.1	511
6	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	11.1	494
7	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364
8	Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 2012, 48, 1027-1029.	2.2	336
9	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
10	A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters, 2015, 15, 6149-6154.	4.5	313
11	Sulfur–nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 2013, 5, 3283.	2.8	304
12	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.	7.3	261
13	Ultrahigh Conductive Graphene Paper Based on Ballâ€Milling Exfoliated Graphene. Advanced Functional Materials, 2017, 27, 1700240.	7.8	241
14	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228
15	Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale, 2012, 4, 6455.	2.8	212
16	One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH) 2 composites for high performance electrochemical supercapacitor. Journal of Power Sources, 2013, 243, 555-561.	4.0	204
17	Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long‣ife Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602380.	10.2	201
18	Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 2209-2218.	7.3	188

#	Article	IF	CITATIONS
19	Sandwich-Type NbS ₂ @S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 8488-8498.	7.3	174
20	Synchronous Gains of Areal and Volumetric Capacities in Lithium–Sulfur Batteries Promised by Flower-like Porous Ti ₃ C ₂ T _{<i>x</i>} Matrix. ACS Nano, 2019, 13, 3404-3412.	7.3	153
21	Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping Nâ€Đoped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media. Advanced Science, 2018, 5, 1700733.	5.6	152
22	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.	7.3	138
23	Sulfurâ€Impregnated, Sandwichâ€Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for Highâ€Performance Lithiumâ€5ulfur Batteries. Advanced Energy Materials, 2014, 4, 1301988.	10.2	130
24	Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8683-8689.	5.2	123
25	A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15343-15352.	5.2	120
26	Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 2603.	2.8	105
27	Radially Inwardly Aligned Hierarchical Porous Carbon for Ultra‣ong‣ife Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 6406-6411.	7.2	100
28	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	4.6	97
29	Facile Construction of Manganese Oxide Doped Carbon Nanotube Catalysts with High Activity for Oxygen Reduction Reaction and Investigations into the Origin of their Activity Enhancement. ACS Applied Materials & Interfaces, 2011, 3, 2601-2606.	4.0	92
30	3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 18193-18206.	5.2	86
31	Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 2016, 8, 19326-19333.	2.8	80
32	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
33	Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 7538-7551.	7.3	80
34	Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium. Journal of Power Sources, 2011, 196, 9970-9974.	4.0	79
35	A Facile and General Approach for the Direct Fabrication of 3D, Vertically Aligned Carbon Nanotube Array/Transition Metal Oxide Composites as Nonâ€Pt Catalysts for Oxygen Reduction Reactions. Advanced Materials, 2014, 26, 3156-3161.	11.1	74
36	Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3543-3550.	4.0	72

#	Article	IF	CITATIONS
37	Highly Conductive Porous Transition Metal Dichalcogenides via Water Steam Etching for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18845-18855.	4.0	57
38	Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and Cooling-Management. Advanced Fiber Materials, 2019, 1, 61-70.	7.9	56
39	Highly efficient oxygen evolution from CoS ₂ /CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894.	2.8	55
40	Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. ACS Applied Materials & Interfaces, 2016, 8, 28838-28843.	4.0	53
41	Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2003354.	7.8	53
42	3D CNTs/Grapheneâ€Sâ€Al ₃ Ni ₂ Cathodes for Highâ€Sulfurâ€Loading and Longâ€Life Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800026.	5.6	50
43	Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6245-6256.	5.2	48
44	Sulfur Reduction Catalyst Design Inspired by Elemental Periodic Expansion Concept for Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 6414-6425.	7.3	37
45	Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight. Journal of Colloid and Interface Science, 2018, 530, 714-724.	5.0	32
46	Hydrogen-substituted graphdiyne/graphene as an sp/sp ² hybridized carbon interlayer for lithium–sulfur batteries. Nanoscale, 2021, 13, 3817-3826.	2.8	27
47	A novel label-free fluorescence strategy for methyltransferase activity assay based on dsDNA-templated copper nanoparticles coupled with an endonuclease-assisted signal transduction system. Analyst, The, 2016, 141, 1383-1389.	1.7	25
48	An Overview on Noble Metal (Group VIII)â€based Heterogeneous Electrocatalysts for Nitrogen Reduction Reaction. Chemistry - an Asian Journal, 2020, 15, 4131-4152.	1.7	25
49	Oxygen doping in antimony sulfide nanosheets to facilitate catalytic conversion of polysulfides for lithium–sulfur batteries. Chemical Communications, 2021, 57, 3255-3258.	2.2	23
50	Designing Pd/O co-doped MoS _x for boosting the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15599-15606.	5.2	22
51	Synthesis of a MoS <i>_x</i> –O–PtO <i>_x</i> Electrocatalyst with High Hydrogen Evolution Activity Using a Sacrificial Counterâ€Electrode. Advanced Science, 2019, 6, 1801663.	5.6	21
52	Cofactorâ€Assisted Artificial Enzyme with Multiple Liâ€Bond Networks for Sustainable Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104205.	5.6	20
53	Three-dimensional sp ² carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium–sulfur batteries. Nanoscale, 2018, 10, 10999-11005.	2.8	18
54	Interfacial Molecule Mediators in Cathodes for Advanced Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29978-29984.	4.0	17

#	Article	IF	CITATIONS
55	Intermolecular electron modulation by P/O bridging in an IrO ₂ -CoPi catalyst to enhance the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8273-8280.	5.2	16
56	Radially Inwardly Aligned Hierarchical Porous Carbon for Ultra‣ong‣ife Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 6468-6473.	1.6	15
57	Neuron-Inspired Interpenetrative Network Composed of Cobalt–Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2016, 8, 17284-17291.	4.0	13
58	Uniform Formation of Amorphous Cobalt Phosphate on Carbon Nanotubes for Hydrogen Evolution Reaction ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2113-2118.	2.6	12
59	NaBH ₄ -reduction induced tunable oxygen vacancies in LaNiO _{2.7} to enhance the oxygen evolution reaction. Chemical Communications, 2021, 57, 7168-7171.	2.2	11
60	Pd/PdO Electrocatalysts Boost Their Intrinsic Nitrogen Reduction Reaction Activity and Selectivity <i>via</i> Controllably Modulating the Oxygen Level. ACS Applied Materials & Interfaces, 2022, 14, 20988-20996.	4.0	11
61	System-level Pareto frontiers for on-chip thermoelectric coolers. Frontiers in Energy, 2018, 12, 109-120.	1.2	8
62	Titanium silicalite as a radical-redox mediator for high-energy-density lithium–sulfur batteries. Nanoscale, 2019, 11, 16968-16977.	2.8	8
63	Enhanced Interfacial Properties of Thickness-Tunable Carbon Nanosheets for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 13419-13425.	2.5	6
64	Regulatable Detection of Antibiotics Based on a Near-IR-Luminescent Tubelike Zn(II)–Yb(III) Nanocluster. Inorganic Chemistry, 2022, 61, 1011-1017.	1.9	6
65	Progress and Prospect of Organic Electrocatalysts in Lithiumâ^'Sulfur Batteries. Frontiers in Chemistry, 2021, 9, 703354.	1.8	5
66	Organocatalysis-Inspired Palladium Molecule as a Robust Polysulfide-Confinement-Scissors Catalyst for Advanced Lithium–Sulfur Battery. ACS Applied Energy Materials, 2022, 5, 8538-8546.	2.5	4
67	The electrochemical synthesis of CNTs/N-Cu2S composites as efficient electrocatalysts for water oxidation. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	2
68	A "flared-end―gradient coil with outer-wall direct cooling for human brain imaging: A feasibility study. Magnetic Resonance Imaging, 2019, 62, 191-198.	1.0	1