
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6828584/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
2	Core–Shell Structure of Polypyrrole Grown on V ₂ O ₅ Nanoribbon as High Performance Anode Material for Supercapacitors. Advanced Energy Materials, 2012, 2, 950-955.	10.2	469
3	An Aqueous Rechargeable Zn//Co ₃ O ₄ Battery with High Energy Density and Good Cycling Behavior. Advanced Materials, 2016, 28, 4904-4911.	11.1	417
4	Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy and Environmental Science, 2013, 6, 2093.	15.6	348
5	Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy and Environmental Science, 2013, 6, 618-624.	15.6	326
6	A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300647.	10.2	243
7	Nanostructured positive electrode materials for post-lithium ion batteries. Energy and Environmental Science, 2016, 9, 3570-3611.	15.6	241
8	An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy and Environmental Science, 2012, 5, 6909.	15.6	228
9	Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials, 2019, 11, .	3.8	215
10	An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode. Scientific Reports, 2013, 3, 1401.	1.6	190
11	A Quasi‣olid‣tate Sodiumâ€ŀon Capacitor with High Energy Density. Advanced Materials, 2015, 27, 6962-6968.	11.1	177
12	Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics, 2018, 318, 2-18.	1.3	169
13	A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7790.	5.2	166
14	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	5.2	164
15	Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 13148.	6.7	146
16	A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. Journal of Materials Chemistry, 2012, 22, 20143.	6.7	141
17	A Zn–NiO rechargeable battery with long lifespan and high energy density. Journal of Materials Chemistry A, 2015, 3, 8280-8283.	5.2	141
18	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte. Advanced Science, 2019, 6, 1801665.	5.6	124

#	Article	IF	CITATIONS
19	ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochimica Acta, 2016, 213, 260-269.	2.6	123
20	A conductive polymer coated MoO ₃ anode enables an Al-ion capacitor with high performance. Journal of Materials Chemistry A, 2016, 4, 5115-5123.	5.2	120
21	Latest Advances in High-Voltage and High-Energy-Density Aqueous Rechargeable Batteries. Electrochemical Energy Reviews, 2021, 4, 1-34.	13.1	120
22	A Quasiâ€Solidâ€State Liâ€Ion Capacitor Based on Porous TiO ₂ Hollow Microspheres Wrapped with Graphene Nanosheets. Small, 2016, 12, 6207-6213.	5.2	118
23	Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. ACS Applied Materials & Interfaces, 2016, 8, 9022-9029.	4.0	111
24	Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochimica Acta, 2017, 232, 106-113.	2.6	103
25	Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. Scientific Reports, 2013, 3, 3187.	1.6	100
26	Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 272-289.	4.1	98
27	Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2022, 14, 5.	14.4	93
28	Advances in rechargeable Mg batteries. Journal of Materials Chemistry A, 2020, 8, 25601-25625.	5.2	91
29	A quasi-solid-state Li-ion capacitor with high energy density based on Li ₃ VO ₄ /carbon nanofibers and electrochemically-exfoliated graphene sheets. Journal of Materials Chemistry A, 2017, 5, 14922-14929.	5.2	86
30	A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochimica Acta, 2017, 224, 405-411.	2.6	86
31	Sulfur nanocomposite as a positive electrode material for rechargeable potassium–sulfur batteries. Chemical Communications, 2018, 54, 2288-2291.	2.2	86
32	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	2.5	80
33	Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4, 991-998.	4.1	80
34	Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. Journal of Materials Chemistry A, 2013, 1, 14713.	5.2	78
35	Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy, 2020, 77, 105200.	8.2	71
36	Advances of TiO ₂ as Negative Electrode Materials for Sodiumâ€ion Batteries. Advanced Materials Technologies, 2018, 3, 1800004.	3.0	68

#	Article	IF	CITATIONS
37	An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13679-13686.	5.2	68
38	A Highâ€Rate and Longâ€Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery. ChemSusChem, 2019, 12, 3732-3736.	3.6	62
39	High-Rate and High-Voltage Aqueous Rechargeable Zinc Ammonium Hybrid Battery from Selective Cation Intercalation Cathode. ACS Applied Energy Materials, 2019, 2, 6984-6989.	2.5	61
40	Core–shell MnO ₂ @Fe ₂ O ₃ nanospindles as a positive electrode for aqueous supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22066-22072.	5.2	60
41	Li ₄ Ti ₅ O ₁₂ Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	55
42	Composite of CoOOH Nanoplates with Multiwalled Carbon Nanotubes as Superior Cathode Material for Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 7069-7075.	1.5	53
43	A nanocomposite of Li 2 MnO 3 coated by FePO 4 as cathode material for lithium ion batteries. Journal of Power Sources, 2015, 287, 416-421.	4.0	52
44	A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte. Journal of Materials Chemistry A, 2019, 7, 4110-4118.	5.2	51
45	Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Materials, 2018, 10, 429-440.	3.8	50
46	Non-equilibrium Structural Evolution of the Lithium-Rich Li _{1+<i>y</i>} Mn ₂ O ₄ Cathode within a Battery. Chemistry of Materials, 2013, 25, 754-760.	3.2	48
47	Composites of porous Co ₃ O ₄ grown on Li ₂ MnO ₃ microspheres as cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4840-4845.	5.2	45
48	Methods to Improve Lithium Metal Anode for Li-S Batteries. Frontiers in Chemistry, 2019, 7, 827.	1.8	43
49	A high-capacity dual core–shell structured MWCNTs@S@PPy nanocomposite anode for advanced aqueous rechargeable lithium batteries. Nanoscale, 2017, 9, 11004-11011.	2.8	41
50	A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density. Advanced Energy Materials, 2020, 10, 2001583.	10.2	40
51	A Cr ₂ O ₃ /MWCNTs composite as a superior electrode material for supercapacitor. RSC Advances, 2017, 7, 25019-25024.	1.7	39
52	Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Scientific Reports, 2019, 9, 5431.	1.6	39
53	A Facile, One-Step Synthesis of Silicon/Silicon Carbide/Carbon Nanotube Nanocomposite as a Cycling-Stable Anode for Lithium Ion Batteries. Nanomaterials, 2019, 9, 1624.	1.9	39
54	Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. Journal of Alloys and Compounds, 2016, 688, 923-932.	2.8	38

#	Article	IF	CITATIONS
55	Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Advances, 2016, 6, 109340-109345.	1.7	38
56	Metal oxides in supercapacitors. , 2018, , 169-203.		38
57	A multifunctional separator for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 334, 135486.	2.6	38
58	A lithium ion battery using an aqueous electrolyte solution. Scientific Reports, 2016, 6, 28421.	1.6	36
59	Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries. IScience, 2019, 19, 316-325.	1.9	34
60	Advances of Aluminum Based Energy Storage Systems. Chinese Journal of Chemistry, 2017, 35, 13-20.	2.6	33
61	Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. , 2022, 1, 100011.		33
62	Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 8981-8988.	5.2	32
63	Si/C Composites as Negative Electrode for High Energy Lithium Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 21-29.	2.6	31
64	Hollow Co9S8 from metal organic framework supported on rGO as electrode material for highly stable supercapacitors. Chinese Chemical Letters, 2018, 29, 612-615.	4.8	31
65	Nonporous Gel Electrolytes Enable Long Cycling at High Current Density for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 14258-14266.	4.0	29
66	Boosting Polysulfide Catalytic Conversion and Facilitating Li ⁺ Transportation by Ionâ€Selective COFs Composite Nanowire for LiS Batteries. Small, 2022, 18, e2106679.	5.2	29
67	In Pursuit of a Dendrite-Free Electrolyte/Electrode Interface on Lithium Metal Anodes: A Minireview. Energy & Fuels, 2020, 34, 10503-10512.	2.5	27
68	Versatile Asymmetric Separator with Dendriteâ€Free Alloy Anode Enables Highâ€Performance Li–S Batteries. Advanced Science, 2022, 9, .	5.6	22
69	A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendriteâ€Free Lithium Metal Anodes. ChemElectroChem, 2019, 6, 5413-5419.	1.7	21
70	Covalent Bonding of Si Nanoparticles on Graphite Nanosheets as Anodes for Lithium-Ion Batteries Using Diazonium Chemistry. Nanomaterials, 2019, 9, 1741.	1.9	20
71	A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2, 4240-4245.	2.6	20
72	CoS _x /C hierarchical hollow nanocages from a metal–organic framework as a positive electrode with enhancing performance for aqueous supercapacitors. RSC Advances, 2019, 9, 11253-11262.	1.7	18

#	Article	IF	CITATIONS
73	Modifications of Separators for Li–S Batteries with Improved Electrochemical Performance. Russian Journal of Electrochemistry, 2020, 56, 365-377.	0.3	18
74	Co ₃ O ₄ @NiCo ₂ O ₄ double-shelled nanocages with hierarchical hollow structure and oxygen vacancies as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries. Dalton Transactions, 2021, 50, 2093-2101.	1.6	16
75	A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochimica Acta, 2021, 367, 137421.	2.6	15
76	Hydrogen Production by Photoelectrochemically Splitting Solutions of Formic Acid. ChemSusChem, 2011, 4, 1475-1480.	3.6	13
77	Two-dimensional graphitic carbon nitride/N-doped carbon with a direct Z-scheme heterojunction for photocatalytic generation of hydrogen. Nanoscale Advances, 2021, 3, 6580-6586.	2.2	12
78	Double nucleophilic addition to iminomalonate, leading to the synthesis of quaternary \hat{l}_{\pm} -amino diesters and desymmetrization of the products. RSC Advances, 2019, 9, 23400-23407.	1.7	11
79	An umpolung reaction of $\hat{i}\pm$ -iminonitriles and its application to the synthesis of aminomalononitriles. New Journal of Chemistry, 2020, 44, 152-161.	1.4	11
80	CoCO3 from one-step micro-emulsion method as electrode materials for Faradaic capacitors. Scientific Reports, 2017, 7, 2026.	1.6	10
81	A facile approach to 2-alkoxyindolin-3-one and its application to the synthesis of <i>N</i> -benzyl matemone. RSC Advances, 2019, 9, 17341-17346.	1.7	10
82	A selenium-doped carbon anode of high performance for lithium ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 457-464.	1.2	10
83	A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 13814-13820.	5.2	10
84	A Separator Modified with Rutile Titania and Threeâ€Dimensional Interconnected Graphene‣ike Carbon for Advanced Liâ^'S Batteries. ChemElectroChem, 2022, 9, .	1.7	9
85	Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-By-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance. Polymers, 2020, 12, 1572.	2.0	8
86	Metal oxides in batteries. , 2018, , 127-167.		7
87	Formation/Decomposition of Li ₂ O ₂ Induced by Porous NiCeO _{<i>x</i>} Nanorod Catalysts in Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, , .	4.0	6
88	Enhanced Capacitive Desalination Performance of Porous Carbon Spheres@ <scp>MnO₂</scp> Composite. Chinese Journal of Chemistry, 2017, 35, 55-60.	2.6	5
89	An umpolung reaction of \hat{l}_{\pm} -iminothioesters possessing a cyclopropyl group. RSC Advances, 2020, 10, 9955-9963.	1.7	5
90	A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li–S batteries. Sustainable Energy and Fuels, 2020, 4, 4264-4272.	2.5	4

#	Article	IF	CITATIONS
91	Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells. International Journal of Energy Research, 2022, 46, 10919-10929.	2.2	4
92	Study on detection technique of Asbestos in Brake Pads. , 2020, , .		2
93	Comparative Study of the Electrochemical Performance of Different Separators in Aprotic Li–O ₂ Batteries. Energy & Fuels, 2022, 36, 4609-4615.	2.5	2
94	A Facile Synthesis of 2â€Methylâ€3â€oxoindolineâ€2â€carboxylates Utilizing Azaâ€Brook Rearrangement as a Crucial Step. Journal of Heterocyclic Chemistry, 2019, 56, 2479-2486.	1.4	1
95	Preparation and facile addition reactions of iminium salts derived from amino ketene silyl acetal and amino silyl enol ether. RSC Advances, 2020, 10, 27874-27883.	1.7	1
96	2,3-Dimethoxy-2,3-dimethyl-1,4-dioxane as a useful precursor to 2,3-dimethylene-1,4-dioxane for [4+2] cycloaddition reaction. RSC Advances, 2021, 11, 7972-7980.	1.7	1
97	<i>N</i> -Alkylation/aldol reaction of α-aldimino thioesters: a facile three-component coupling reaction. RSC Advances, 2021, 11, 13097-13104.	1.7	0
98	An efficient method for 3, <scp>4â€dihydroisoquinolinium</scp> ion formation, leading to a facile introduction of nucleophiles. Journal of Heterocyclic Chemistry, 2021, 58, 751-756.	1.4	0