David M Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6828531/publications.pdf

Version: 2024-02-01

16411 12,374 180 64 citations h-index papers

101 g-index 180 180 180 7032 docs citations times ranked citing authors all docs

31759

#	Article	IF	CITATIONS
1	Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (<scp><i>Geotria australis</i></scp> , Gray). Journal of Comparative Neurology, 2021, 529, 2265-2282.	0.9	4
2	Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K+ Channel Subunits Kv8.2 and K2.1. International Journal of Molecular Sciences, 2021, 22, 4877.	1.8	11
3	The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors. Pflugers Archiv European Journal of Physiology, 2021, 473, 1455-1468.	1.3	3
4	Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution, 2020, 37, 811-827.	3.5	20
5	Validating Fluorescent Chrnb4.EGFP Mouse Models for the Study of Cone Photoreceptor Degeneration. Translational Vision Science and Technology, 2020, 9, 28.	1.1	9
6	Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Current Biology, 2020, 30, 2608-2615.e4.	1.8	20
7	The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. ENeuro, 2019, 6, ENEURO.0032-19.2019.	0.9	19
8	Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biological Journal of the Linnean Society, 2019, 126, 796-823.	0.7	22
9	Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Molecular Ecology, 2019, 28, 2013-2028.	2.0	15
10	Differential stability of variant gene transcripts in myopic patients. Molecular Vision, 2019, 25, 183-193.	1.1	2
11	Evolution of the shut-off steps of vertebrate phototransduction. Open Biology, 2018, 8, 170232.	1.5	10
12	Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biology, 2018, 8, 180119.	1.5	12
13	Evolution of the vertebrate phototransduction cascade activation steps. Developmental Biology, 2017, 431, 77-92.	0.9	25
14	Genome-wide linkage and haplotype sharing analysis implicates the MCDR3 locus as a candidate region for a developmental macular disorder in association with digit abnormalities. Ophthalmic Genetics, 2017, 38, 511-519.	0.5	2
15	The Genetic and Evolutionary Drives behind Primate Color Vision. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	48
16	Morphological Characterization and Topographic Analysis of Multiple Photoreceptor Types in the Retinae of Mesopelagic Hatchetfishes with Tubular Eyes. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	6
17	Visual pigments in a palaeognath bird, the emu <i>Dromaius novaehollandiae</i> : implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161063.	1.2	17
18	The Genetics of Color Vision and Congenital Color Deficiencies. , 2016, , 1-32.		2

#	Article	IF	Citations
19	Visual Pigments, Ocular Filters and the Evolution of Snake Vision. Molecular Biology and Evolution, 2016, 33, 2483-2495.	3.5	65
20	Evolution of Vertebrate Phototransduction: Cascade Activation. Molecular Biology and Evolution, 2016, 33, 2064-2087.	3.5	44
21	Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152624.	1.2	42
22	Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology, 2015, 28, 1309-1320.	0.8	72
23	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	0.9	17
24	S cones: Evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience, 2014, 31, 115-138.	0.5	75
25	The Evolution of Photoreceptors and Visual Photopigments in Vertebrates., 2014,, 163-217.		17
26	How parrots see their colours: novelty in the visual pigments of <i>Platycercus elegans </i> . Journal of Experimental Biology, 2013, 216, 4454-4461.	0.8	22
27	X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Research, 2013, 80, 41-50.	0.7	22
28	First record of the mandarin dogfish Cirrhigaleus barbifer (Chondrichthyes: Squalidae) from Western Australia. Marine Biodiversity Records, 2013, 6, .	1.2	1
29	Variations in Opsin Coding Sequences Cause X-Linked Cone Dysfunction Syndrome with Myopia and Dichromacy. , 2013, 54, 1361.		50
30	Retinal Amino Acid Neurochemistry of the Southern Hemisphere Lamprey, Geotria australis. PLoS ONE, 2013, 8, e58406.	1,1	12
31	The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic., 2012, 53, 8006.		85
32	Cone monochromacy and visual pigment spectral tuning in wobbegong sharks. Biology Letters, 2012, 8, 1019-1022.	1.0	23
33	Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 387-393.	1.2	48
34	Functional Analysis of Missense Mutations in Kv8.2 Causing Cone Dystrophy with Supernormal Rod Electroretinogram. Journal of Biological Chemistry, 2012, 287, 43972-43983.	1.6	17
35	Evolution and Functional Characterisation of Melanopsins in a Deep-Sea Chimaera (Elephant Shark,) Tj ETQq $1\ 1$	0.784314 1.1	rgBT /Overlo
36	Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments. Cellular and Molecular Life Sciences, 2012, 69, 2455-2464.	2.4	20

#	Article	IF	CITATIONS
37	Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 2012, 21, 3121-3158.	2.0	169
38	Arctic reindeer extend their visual range into the ultraviolet. Journal of Experimental Biology, 2011, 214, 2014-2019.	0.8	56
39	Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene. PLoS ONE, 2011, 6, e18089.	1.1	28
40	Extended extraocular phenotype of PROM1 mutation in kindreds with known autosomal dominant macular dystrophy. European Journal of Human Genetics, 2011, 19, 131-137.	1.4	24
41	Ultraviolet-sensitive vision in long-lived birds. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 107-114.	1.2	36
42	"CONE DYSTROPHY WITH SUPERNORMAL ROD ELECTRORETINOGRAM†A COMPREHENSIVE GENOTYPE/PHENOTYPE STUDY INCLUDING FUNDUS AUTOFLUORESCENCE AND EXTENSIVE ELECTROPHYSIOLOGY. Retina, 2010, 30, 51-62.	1.0	71
43	Guanylate cyclases and associated activator proteins in retinal disease. Molecular and Cellular Biochemistry, 2010, 334, 157-168.	1.4	62
44	Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial <1>Thylamys elegans (Waterhouse, 1839). Journal of Comparative Neurology, 2010, 518, 1589-1602.	0.9	23
45	The <i>PROM1</i> Mutation p.R373C Causes an Autosomal Dominant Bull's Eye Maculopathy Associated with Rod, Rod–Cone, and Macular Dystrophy. , 2010, 51, 4771.		96
46	Into the blue: Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark <i>Callorhinchus milii</i> . Genome Research, 2009, 19, 415-426.	2.4	62
47	A Mutant Connexin50 with Enhanced Hemichannel Function Leads to Cell Death., 2009, 50, 5837.		77
48	Adaptive Gene Loss Reflects Differences in the Visual Ecology of Basal Vertebrates. Molecular Biology and Evolution, 2009, 26, 1803-1809.	3. 5	50
49	Shedding Light on Serpent Sight: The Visual Pigments of Henophidian Snakes. Journal of Neuroscience, 2009, 29, 7519-7525.	1.7	67
50	Evaluation of the X-Linked High-Grade Myopia Locus (MYP1) with Cone Dysfunction and Color Vision Deficiencies., 2009, 50, 1552.		24
51	Developmental dynamics of cone photoreceptors in the eel. BMC Developmental Biology, 2009, 9, 71.	2.1	21
52	Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2941-2955.	1.8	182
53	The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2925-2940.	1.8	89
54	Cone visual pigments in two species of South American marsupials. Gene, 2009, 433, 50-55.	1.0	33

#	Article	IF	CITATIONS
55	Clinical characterization and genetic mapping of North Carolina macular dystrophy. Vision Research, 2008, 48, 470-477.	0.7	28
56	Focus on molecules: Retinol dehydrogenase 12 (RDH12). Experimental Eye Research, 2008, 87, 160-161.	1.2	3
57	The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, <i>Acanthopagrus butcheri </i> 1495-1503.	0.8	133
58	Cone visual pigments in two marsupial species: the fat-tailed dunnart (<i>Sminthopsis) Tj ETQq0 0 0 rgBT /Overl B: Biological Sciences, 2008, 275, 1491-1499.</i>	ock 10 Tf 1.2	50 627 Td (ci 43
59	Eel visual pigments revisited: The fate of retinal cones during metamorphosis. Visual Neuroscience, 2008, 25, 249-255.	0.5	19
60	Dominant Cone and Cone-Rod Dystrophies: Functional Analysis of Mutations in RetGC1 and GCAP1. Novartis Foundation Symposium, 2008, 255, 37-50.	1.2	5
61	Phenotypic Variation in Enhanced S-cone Syndrome. , 2008, 49, 2082.		107
62	Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. Journal of Clinical Investigation, 2008, 118, 2908-16.	3.9	194
63	Enzyme Sequence and Its Relationship to Hyperbaric Stability of Artificial and Natural Fish Lactate Dehydrogenases. PLoS ONE, 2008, 3, e2042.	1.1	34
64	Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Molecular Vision, 2008, 14, 683-90.	1.1	26
65	Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB Journal, 2007, 21, 2713-2724.	0.2	74
66	The Molecular Evolution of Avian Ultraviolet- and Violet-Sensitive Visual Pigments. Molecular Biology and Evolution, 2007, 24, 1843-1852.	3.5	58
67	The visual pigments of a deep-sea teleost, the pearl eye <i>Scopelarchus analis</i> Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li	0.8	27
68	A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. Journal of Medical Genetics, 2007, 45, 155-160.	1.5	69
69	Genetic enhancement of cognition in a kindred with cone-rod dystrophy due to RIMS1 mutation. Journal of Medical Genetics, 2007, 44, 373-380.	1.5	29
70	SPLICE: A technique for generating in vitro spliced coding sequences from genomic DNA. BioTechniques, 2007, 43, 785-789.	0.8	17
71	Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 2007, 17, R161-R163.	1.8	93
72	Avian Visual Pigments: Characteristics, Spectral Tuning, and Evolution. American Naturalist, 2007, 169, S7-S26.	1.0	273

#	Article	IF	Citations
73	Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebratesâ€. Photochemistry and Photobiology, 2007, 83, 303-310.	1.3	92
74	Mutations in the Gene KCNV2 Encoding a Voltage-Gated Potassium Channel Subunit Cause "Cone Dystrophy with Supernormal Rod Electroretinogram―in Humans. American Journal of Human Genetics, 2006, 79, 574-579.	2.6	112
7 5	Vertebrate Opsins Belonging to Different Classes Vary in Constitutively Active Properties Resulting from Salt-Bridge Mutationsâ€. Biochemistry, 2006, 45, 7307-7313.	1.2	10
76	Evolution of the Cichlid Visual Palette through Ontogenetic Subfunctionalization of the Opsin Gene Arrays. Molecular Biology and Evolution, 2006, 23, 1538-1547.	3.5	177
77	A study of the nuclear trafficking of the splicing factor protein PRPF31 linked to autosomal dominant retinitis pigmentosa (ADRP). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 304-311.	1.8	18
78	Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials. Gene, 2006, 381, 13-17.	1.0	8
79	Progressive Cone and Cone-Rod Dystrophies: Phenotypes and Underlying Molecular Genetic Basis. Survey of Ophthalmology, 2006, 51, 232-258.	1.7	208
80	The Genetics and Evolution of Primate Visual Pigments. , 2006, , 73-97.		2
81	Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology, 2006, 16, R81-R83.	1.8	50
82	Evolution of vertebrate visual pigments. Current Biology, 2006, 16, R484-R489.	1.8	122
83	Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology, 2005, 14, 4341-4353.	2.0	151
84	Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids. Current Biology, 2005, 15, 1734-1739.	1.8	194
85	Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka () Tj ETQq1 1 0.7 Sciences, 2005, 272, 791-796.	784314 rg 1.2	BT /Overlock 48
86	A detailed phenotypic study of "cone dystrophy with supernormal rod ERG". British Journal of Ophthalmology, 2005, 89, 332-339.	2.1	63
87	Chromosomal localization, genomic organization and evolution of the genes encoding human phosphatidylinositol transfer protein membrane-associated (PITPNM) 1, 2 and 3. Cytogenetic and Genome Research, 2005, 108, 293-302.	0.6	19
88	Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish. Journal of Experimental Biology, 2005, 208, 2363-2376.	0.8	28
89	A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. Journal of Medical Genetics, 2005, 43, e2-e2.	1.5	75
90	Isolation and characterization of murine Cds (CDP-diacylglycerol synthase) 1 and 2. Gene, 2005, 356, 19-31.	1.0	45

#	Article	IF	Citations
91	X-Linked Cone Dysfunction Syndrome with Myopia and Protanopia. Ophthalmology, 2005, 112, 1448-1454.	2.5	53
92	Mutation in the Gene GUCA1A, Encoding Guanylate Cyclase-Activating Protein 1, Causes Cone, Cone-Rod, and Macular Dystrophy. Ophthalmology, 2005, 112, 1442-1447.	2.5	50
93	Cone–Rod Dystrophy, Intrafamilial Variability, and Incomplete Penetrance Associated with the R172W Mutation in the Peripherin/RDS Gene. Ophthalmology, 2005, 112, 1592-1598.	2.5	72
94	Progressive Cone Dystrophy Associated with Mutation inCNGB3., 2004, 45, 1975.		74
95	Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. Journal of Medical Genetics, 2004, 41, 20e-20.	1.5	109
96	The cone dysfunction syndromes. British Journal of Ophthalmology, 2004, 88, 291-297.	2.1	191
97	Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochemical and Photobiological Sciences, 2004, 3, 713.	1.6	60
98	A Novel Amino Acid Substitution Is Responsible for Spectral Tuning in a Rodent Violet-Sensitive Visual Pigment. Biochemistry, 2004, 43, 8014-8020.	1.2	56
99	Purification, characterisation and intracellular localisation of aryl hydrocarbon interacting protein-like 1 (AIPL1) and effects of mutations associated with inherited retinal dystrophies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1690, 141-149.	1.8	8
100	Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biology, 2003, 13, R864-R865.	1.8	141
101	The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart. Gene, 2003, 323, 157-162.	1.0	5
102	Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7)â~†. Genomics, 2003, 81, 304-314.	1.3	94
103	Expression of PRPF31mRNA in Patients with Autosomal Dominant Retinitis Pigmentosa: A Molecular Clue for Incomplete Penetrance?., 2003, 44, 4204.		125
104	An Early-Onset Autosomal Dominant Macular Dystrophy (MCDR3) Resembling North Carolina Macular Dystrophy Maps to Chromosome 5., 2003, 44, 2178.		60
105	The genetics of inherited macular dystrophies. Journal of Medical Genetics, 2003, 40, 641-650.	1.5	151
106	An Autosomal Dominant Bull's-Eye Macular Dystrophy (MCDR2) that Maps to the Short Arm of Chromosome 4. , 2003, 44, 1657.		44
107	Spectral Sensitivity Tuning in the Deep-Sea. , 2003, , 323-342.		25
108	Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31. Human Molecular Genetics, 2002, 11, 3209-3219.	1.4	75

#	Article	IF	CITATIONS
109	Mutations in HPRP3, a third member ofpre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Human Molecular Genetics, 2002, 11, 87-92.	1.4	217
110	Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). Journal of Medical Genetics, 2002, 39, 656-660.	1.5	114
111	Spectral Tuning and Evolution of Short Wave-Sensitive Cone Pigments in Cottoid Fish from Lake Baikalâ€. Biochemistry, 2002, 41, 6019-6025.	1.2	54
112	Genomic Organization of Human CDS2 and Evaluation as a Candidate Gene for Corneal Hereditary Endothelial Dystrophy 2 on Chromosome 20p13. Experimental Eye Research, 2002, 75, 619-623.	1.2	4
113	Characterisation of two genes for guanylate cyclase activator protein (GCAP1 and GCAP2) in the Japanese pufferfish, Fugu rubripes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 73-80.	2.4	1
114	The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochemical Journal, 2002, 367, 129-135.	1.7	123
115	Guanylate Cyclase Activating Proteins, Guanylate Cyclase and Disease. Advances in Experimental Medicine and Biology, 2002, 514, 411-438.	0.8	13
116	Characterization of a Novel Human Opsin Gene with Wide Tissue Expression and Identification of Embedded and Flanking Genes on Chromosome 1q43. Genomics, 2001, 72, 203-208.	1.3	103
117	Identification and Functional Consequences of a New Mutation (E155G) in the Gene for GCAP1 That Causes Autosomal Dominant Cone Dystrophy. American Journal of Human Genetics, 2001, 69, 471-480.	2.6	115
118	A Human Homolog of Yeast Pre-mRNA Splicing Gene, PRP31, Underlies Autosomal Dominant Retinitis Pigmentosa on Chromosome 19q13.4 (RP11). Molecular Cell, 2001, 8, 375-381.	4.5	305
119	Vision in the ultraviolet. Cellular and Molecular Life Sciences, 2001, 58, 1583-1598.	2.4	120
120	Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. Journal of Medical Genetics, 2001, 38, 611-614.	1.5	60
121	Interactions within the Coiled-coil Domain of RetGC-1 Guanylyl Cyclase Are Optimized for Regulation Rather than for High Affinity. Journal of Biological Chemistry, 2001, 276, 26218-26229.	1.6	84
122	The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. Journal of Experimental Biology, 2001, 204, 3333-3344.	0.8	139
123	Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nature Genetics, 2000, 25, 306-310.	9.4	295
124	Visual responses of ganglion cells of a Newâ€World primate, the capuchin monkey, Cebus apella. Journal of Physiology, 2000, 528, 573-590.	1.3	43
125	Spectral Tuning of Avian Violet- and Ultraviolet-Sensitive Visual Pigments. Biochemistry, 2000, 39, 7895-7901.	1.2	129
126	Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Human Molecular Genetics, 2000, 9, 3065-3073.	1.4	83

#	Article	IF	CITATIONS
127	A cluster of single nucleotide polymorphisms in the 5′-leader of the human dopamine D3 receptor gene (DRD3) and its relationship to schizophrenia. Neuroscience Letters, 2000, 279, 13-16.	1.0	45
128	Autosomal dominant cone–rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase 1 1The authors have no proprietary interests in the materials mentioned in the study Ophthalmology, 2000, 107, 55-61.	2.5	100
129	Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9039-9044.	3.3	105
130	Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Research, 1999, 39, 2817-2832.	0.7	71
131	Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision Research, 1999, 39, 2801-2815.	0.7	70
132	Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology. Visual Neuroscience, 1999, 16, 333-343.	0.5	60
133	Estimating the relatedness in a population of grey squirrels Sciurus carolinensis, using DNA fingerprinting. Acta Theriologica, 1999, 44, 243-251.	1.1	3
134	The Evolution of Trichromatic Color Vision by Opsin Gene Duplication in New World and Old World Primates. Genome Research, 1999, 9, 629-638.	2.4	134
135	High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death and Differentiation, 1998, 5, 156-162.	5.0	67
136	Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Therapy, 1998, 5, 1038-1046.	2.3	101
137	Molecular Genetics of Spectral Tuning in New World Monkey Color Vision. Journal of Molecular Evolution, 1998, 46, 697-702.	0.8	64
138	Post-receptoral mechanisms of colour vision in new world primates. Vision Research, 1998, 38, 3329-3337.	0.7	40
139	Molecular evolution of trichromacy in primates. Vision Research, 1998, 38, 3299-3306.	0.7	151
140	Localization of a Gene (CORD7) for a Dominant Cone-Rod Dystrophy to Chromosome 6q. American Journal of Human Genetics, 1998, 63, 274-279.	2.6	78
141	A retGC-1 Mutation in Autosomal Dominant Cone-Rod Dystrophy. American Journal of Human Genetics, 1998, 63, 651-654.	2.6	89
142	Absence of p53 delays apoptotic photoreceptor cell death in the rds mouse. Current Eye Research, 1998, 17, 917-923.	0.7	23
143	Isolation and Chromosomal Localization of Two Human CDP-diacylglycerol Synthase (CDS) Genes. Genomics, 1998, 54, 140-144.	1.3	44
144	Mutations in the Retinal Guanylate Cyclase (RETGC-1) Gene in Dominant Cone-Rod Dystrophy. Human Molecular Genetics, 1998, 7, 1179-1184.	1.4	232

#	Article	IF	CITATIONS
145	Adeno-Associated Virus Gene Transfer to Mouse Retina. Human Gene Therapy, 1998, 9, 81-86.	1.4	118
146	The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neuroscience, 1998, 15, 643-651.	0.5	94
147	Localisation of a gene for dominant cone-rod dystrophy (CORD6) to chromosome 17p. Human Molecular Genetics, 1997, 6, 597-600.	1.4	50
148	Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 155-163.	1.2	66
149	The number of triplet repeats in five brain-expressed loci with CAG repeats is not associated with schizophrenia. Schizophrenia Research, 1997, 25, 111-116.	1.1	8
150	Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Research, 1997, 37, 2183-2194.	0.7	440
151	The rod and green cone opsins of two avian species, the budgerigar, Melopsittacus undulatus, and the mallard duck, Anas platyrhynchus. Gene, 1997, 204, 121-126.	1.0	16
152	Characterisation of the Ultraviolet-Sensitive Opsin Gene in the Honey Bee, Apis Mellifera. FEBS Journal, 1997, 243, 775-781.	0.2	18
153	Molecular Evolution of the Cottoid Fish Endemic to Lake Baikal Deduced from Nuclear DNA Evidence. Molecular Phylogenetics and Evolution, 1997, 8, 415-422.	1.2	39
154	Clinical Features of Progressive Bifocal Chonoretinal Atrophy. Ophthalmology, 1996, 103, 893-898.	2.5	41
155	Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research, 1996, 36, 1217-1224.	0.7	129
156	Human guanylate kinase (GUK1): cDNA sequence, expression and chromosomal localisation. FEBS Letters, 1996, 385, 185-188.	1.3	17
157	The maddening business of King George III and porphyria. Trends in Biochemical Sciences, 1996, 21, 229-234.	3.7	16
158	Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Human Molecular Genetics, 1996, 5, 591-594.	1.4	209
159	Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus). Journal of Neuroscience, 1995, 15, 7892-7904.	1.7	103
160	Localisation of the gene encoding diacylglycerol kinase 3 (DAGK3) to human chromosome 3q27-28 and mouse chromosome 16. Current Eye Research, 1995, 14, 1041-1043.	0.7	1
161	The chemistry of John Dalton's color blindness. Science, 1995, 267, 984-988.	6.0	99
162	Localization of the gene for progressive bifocal chorioretinal atrophy (PBCRA) to chromosome 6q. Human Molecular Genetics, 1995, 4, 1653-1656.	1.4	61

#	Article	IF	CITATIONS
163	Adaptive evolution of color vision genes in higher primates. Science, 1995, 269, 1265-1267.	6.0	97
164	CAG repeat expansions and schizophrenia: association with disease in females and with early age-at-onset. Human Molecular Genetics, 1995, 4, 1957-1961.	1.4	131
165	The rhodopsin-encoding gene of bony fish lacks introns. Gene, 1995, 164, 273-277.	1.0	77
166	Sequence and Evolution of the Blue Cone Pigment Gene in Old and New World Primates. Genomics, 1995, 27, 535-538.	1.3	42
167	Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32. Human Genetics, 1994, 93, 79-80.	1.8	18
168	Genetic linkage of cone–rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nature Genetics, 1994, 6, 210-213.	9.4	119
169	Visual pigments and the photic environment: The cottoid fish of Lake Baikal. Vision Research, 1994, 34, 591-605.	0.7	166
170	Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys. Vision Research, 1994, 34, 2483-2491.	0.7	75
171	Structure and evolution of the polymorphic photopigment gene of the marmoset. Vision Research, 1993, 33, 147-154.	0.7	70
172	Genetic differences in zinc and copper induction of liver metallothionein in inbred strains of the mouse. Biochemical Genetics, 1989, 27, 199-217.	0.8	9
173	A study of intestinal copper-binding proteins in mottled mice. Chemico-Biological Interactions, 1983, 45, 113-124.	1.7	6
174	Genetic studies on metallothionein synthesis in the mouse: The induction of metallothionein by cadmium in inbred strains. Biochemical Genetics, 1983, 21, 609-625.	0.8	17
175	A study of copper treatment and tissue copper levels in the murine congenital copper deficiency, mottled. Life Sciences, 1976, 19, 1913-1920.	2.0	68
176	Primary defect in copper transport underlies mottled mutants in the mouse. Nature, 1974, 249, 852-854.	13.7	323
177	The physiological control of gene action in the <i>eyeless</i> and <i>eyegone</i> mutants of <i>Drosophila melanogaster</i> . Genetical Research, 1971, 17, 195-208.	0.3	6
178	Lethal interactions of the <i>eye-gone </i> and <i>eyeless </i> mutants in <i>Drosophila melanogaster </i> Genetical Research, 1970, 15, 29-34.	0.3	14
179	Gene-environment interactions of the eye-gone mutant in Drosophila melanogaster and a comparison with eyeless. Genetical Research, 1969, 13, 313-320.	0.3	5
180	Gene-environment interactions of the eyeless mutant in Drosophila melanogaster. Genetical Research, 1969, 13, 251-265.	0.3	6