David Sean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6828443/publications.pdf Version: 2024-02-01

1040056 839539 18 374 9 18 citations h-index g-index papers 19 19 19 475 citing authors docs citations times ranked all docs

ΠΑΥΙΟ SEAN

#	Article	IF	CITATIONS
1	Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter, 2019, 15, 1155-1185.	2.7	78
2	Influence of weak groups on polyelectrolyte mobilities. Electrophoresis, 2019, 40, 799-809.	2.4	1
3	Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models. Physical Review Letters, 2019, 122, 208002.	7.8	14
4	Reducing the variance in the translocation times by prestretching the polymer. Physical Review E, 2018, 98, 022501.	2.1	6
5	Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions. Gels, 2018, 4, 2.	4.5	17
6	Langevin dynamcis simulations of driven polymer translocation into a crossâ€linked gel. Electrophoresis, 2017, 38, 653-658.	2.4	4
7	Highly driven polymer translocation from a cylindrical cavity with a finite length. Journal of Chemical Physics, 2017, 146, 054903.	3.0	10
8	Rotation-Induced Macromolecular Spooling of DNA. Physical Review X, 2017, 7, .	8.9	2
9	Free Energy of a Polymer in Slit-like Confinement from the Odijk Regime to the Bulk. Macromolecules, 2016, 49, 9266-9271.	4.8	22
10	Physical confinement signals regulate the organization of stem cells in three dimensions. Journal of the Royal Society Interface, 2016, 13, 20160613.	3.4	11
11	Interfacing solidâ€state nanopores with gel media to slow DNA translocations. Electrophoresis, 2015, 36, 1759-1767.	2.4	35
12	Translocation of a polymer through a nanopore starting from a confining nanotube. Electrophoresis, 2015, 36, 682-691.	2.4	21
13	Using a Péclet number for the translocation of a polymer through a nanopore to tune coarse-grained simulations to experimental conditions. Physical Review E, 2015, 91, 022601.	2.1	17
14	Can gel concentration gradients improve twoâ€dimensional DNA displays?. Electrophoresis, 2014, 35, 736-745.	2.4	0
15	Gel electrophoresis of DNA partially denatured at the ends: What are the dominant conformations?. Electrophoresis, 2013, 34, 745-752.	2.4	2
16	Electrophoretic mobility of partially denatured DNA in a gel: Qualitative and semiquantitative differences between bubbles and split ends. Electrophoresis, 2012, 33, 1341-1348.	2.4	5
17	Physical interpretation of the <i>L</i> _r parameter in the theory for the gel electrophoresis of partially denatured DNA. Electrophoresis, 2010, 31, 3446-3449.	2.4	2
18	Modeling the separation of macromolecules: A review of current computer simulation methods. Electrophoresis, 2009, 30, 792-818.	2.4	126