
Haifei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4, 787-793.	27.5	721
2	Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chemical Society Reviews, 2014, 43, 4341-4356.	38.1	556
3	Synthesis and applications of emulsion-templated porous materials. Soft Matter, 2005, 1, 107.	2.7	409
4	Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. Journal of Chromatography A, 2014, 1357, 36-52.	3.7	375
5	Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology and Biotechnology, 2011, 86, 172-184.	3.2	369
6	Aligned Porous Structures by Directional Freezing. Advanced Materials, 2007, 19, 1529-1533.	21.0	323
7	Macro-/microporous MOF composite beads. Journal of Materials Chemistry, 2010, 20, 5720.	6.7	162
8	Synthesis of Hierarchically Porous Silica and Metal Oxide Beads Using Emulsion-Templated Polymer Scaffolds. Chemistry of Materials, 2004, 16, 4245-4256.	6.7	145
9	Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. Journal of Materials Chemistry A, 2013, 1, 3276.	10.3	140
10	Uniform Emulsion-Templated Silica Beads with High Pore Volume and Hierarchical Porosity. Advanced Materials, 2003, 15, 78-81.	21.0	136
11	Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nature Nanotechnology, 2008, 3, 506-511.	31.5	135
12	Synthesis of Monodisperse Emulsion-Templated Polymer Beads by Oil-in-Water-in-Oil (O/W/O) Sedimentation Polymerization. Chemistry of Materials, 2002, 14, 4017-4020.	6.7	132
13	Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale, 2016, 8, 1746-1769.	5.6	116
14	Green synthesis of chitosan-based nanofibers and their applications. Green Chemistry, 2010, 12, 1207.	9.0	103
15	Aligned Porous Materials by Directional Freezing of Solutions in Liquid CO2. Journal of the American Chemical Society, 2005, 127, 13482-13483.	13.7	99
16	Emulsion-Templated Gold Beads Using Gold Nanoparticles as Building Blocks. Advanced Materials, 2004, 16, 27-30.	21.0	90
17	Solutionâ€Processable Molecular Cage Micropores for Hierarchically Porous Materials. Advanced Materials, 2012, 24, 5732-5737.	21.0	85
18	Preparation of Ice-Templated MOF–Polymer Composite Monoliths and Their Application for Wastewater Treatment with High Capacity and Easy Recycling. ACS Applied Materials & Interfaces, 2017, 9, 33979-33988.	8.0	81

#	Article	IF	CITATIONS
19	Tuning Morphology of Nanostructured ZIF-8 on Silica Microspheres and Applications in Liquid Chromatography and Dye Degradation. ACS Applied Materials & Interfaces, 2015, 7, 18054-18063.	8.0	78
20	Macroporous metal–organic framework microparticles with improved liquid phase separation. Journal of Materials Chemistry A, 2014, 2, 9085-9090.	10.3	77
21	Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 2012, 22, 11615.	6.7	70
22	Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization. Soft Matter, 2013, 9, 2723.	2.7	70
23	Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 2009, 19, 5212.	6.7	65
24	Refinement of pore size at sub-angstrom precision in robust metal–organic frameworks for separation of xylenes. Nature Communications, 2020, 11, 4280.	12.8	61
25	Hierarchical porous metal–organic framework monoliths. Chemical Communications, 2014, 50, 14314-14316.	4.1	60
26	Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. Journal of Materials Chemistry A, 2014, 2, 17787-17796.	10.3	59
27	Oneâ€Pot Synthesis of Spheresâ€onâ€Sphere Silica Particles from a Single Precursor for Fast HPLC with Low Back Pressure. Advanced Materials, 2012, 24, 6042-6048.	21.0	52
28	Uploading and Temperature-Controlled Release of Polymeric Colloids via Hydrophilic Emulsion-Templated Porous Polymers. ACS Applied Materials & Interfaces, 2010, 2, 1400-1406.	8.0	50
29	Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach. Journal of Colloid and Interface Science, 2011, 356, 573-578.	9.4	48
30	Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon, 2015, 95, 268-278.	10.3	48
31	Critical points and phase behavior of toluene-CO2 and toluene-H2-CO2 mixture in CO2-rich region. Journal of Supercritical Fluids, 2000, 18, 185-192.	3.2	47
32	A novel route to polymeric sub-micron fibers and their use as templates for inorganic structures. Chemical Communications, 2009, , 3946.	4.1	47
33	Synthesis of Porous Microparticles with Aligned Porosity. Advanced Functional Materials, 2008, 18, 222-228.	14.9	46
34	Pressure Tuning of Reaction Equilibrium of Esterification of Acetic Acid with Ethanol in Compressed CO2. Journal of Physical Chemistry B, 2001, 105, 4510-4513.	2.6	45
35	Synthesis of polyimide-modified carbon nanotubes as catalyst for organic pollutant degradation via production of singlet oxygen with peroxymonosulfate without light irradiation. Journal of Hazardous Materials, 2020, 382, 120993.	12.4	45
36	Cu(<scp>i</scp>)Cu(<scp>ii</scp>)BTC, a microporous mixed-valence MOF via reduction of HKUST-1. RSC Advances, 2016, 6, 8902-8905.	3.6	44

Haifei Zhang

#	Article	IF	CITATIONS
37	Synthesis of Uniform Porous Silica Microspheres with Hydrophilic Polymer as Stabilizing Agent. Industrial & Engineering Chemistry Research, 2010, 49, 602-608.	3.7	43
38	Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 2016, 42, 12414-12421.	4.8	43
39	The self-renewal of mouse embryonic stem cells is regulated by cell–substratum adhesion and cell spreading. International Journal of Biochemistry and Cell Biology, 2013, 45, 2698-2705.	2.8	41
40	Thermoresponsive "Particle Pumps― Activated Release of Organic Nanoparticles from Openâ€Cell Macroporous Polymers. Advanced Materials, 2007, 19, 2439-2444.	21.0	39
41	Synthesis of CO2-philic Xanthateâ^'Oligo(vinyl acetate)-Based Hydrocarbon Surfactants by RAFT Polymerization and Their Applications on Preparation of Emulsion-Templated Materials. Macromolecules, 2010, 43, 9355-9364.	4.8	39
42	Emulsion-Templated Hierarchically Porous Silica Beads Using Silica Nanoparticles as Building Blocks. Industrial & Engineering Chemistry Research, 2005, 44, 8707-8714.	3.7	38
43	Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 2012, 22, 25027.	6.7	38
44	Development of Silver-Nanoparticle-Decorated Emulsion-Templated Hierarchically Porous Poly(1-vinylimidazole) Beads for Water Treatment. ACS Applied Materials & Interfaces, 2017, 9, 24190-24197.	8.0	38
45	Freezeâ€Align and Heatâ€Fuse: Microwires and Networks from Nanoparticle Suspensions. Angewandte Chemie - International Edition, 2008, 47, 4573-4576.	13.8	37
46	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 2015, 51, 1717-1720.	4.1	34
47	Nitrogen-rich activated carbon monoliths via ice-templating with high CO ₂ and H ₂ adsorption capacities. Journal of Materials Chemistry A, 2017, 5, 2811-2820.	10.3	34
48	Core–shell microspheres with porous nanostructured shells for liquid chromatography. Journal of Separation Science, 2018, 41, 99-124.	2.5	34
49	Measurement of critical points of the methylcyclohexane (MCH)–H2–CO2 system in the CO2-rich region. Fluid Phase Equilibria, 2001, 179, 131-138.	2.5	32
50	New approaches to the synthesis of macroporous metals. Journal of Materials Chemistry, 2005, 15, 2157.	6.7	32
51	Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 2011, 21, 5753.	6.7	30
52	Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications. Journal of Chromatography A, 2012, 1270, 194-203.	3.7	30
53	Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers. International Journal of Pharmaceutics, 2013, 447, 241-250.	5.2	30
54	Main-chain degradable star polymers comprised of pH-responsive hyperbranched cores and thermoresponsive polyethylene glycol-based coronas. Polymer Chemistry, 2018, 9, 4824-4839.	3.9	30

#	Article	IF	CITATIONS
55	Fundamentals and Design‣ed Synthesis of Emulsionâ€Templated Porous Materials for Environmental Applications. Advanced Science, 2021, 8, e2102540.	11.2	30
56	Precipitation of lysozyme solubilized in reverse micelles by dissolved CO2. Journal of Supercritical Fluids, 2001, 20, 65-71.	3.2	28
57	Magnetic Hierarchically Macroporous Emulsion-Templated Poly(acrylic acid)–Iron Oxide Nanocomposite Beads for Water Remediation. Langmuir, 2019, 35, 8996-9003.	3.5	28
58	Gradient porous materials by emulsion centrifugation. Chemical Communications, 2011, 47, 11754.	4.1	26
59	Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. Journal of Materials Chemistry A, 2015, 3, 15513-15522.	10.3	26
60	lce- and MOF-templated porous carbonaceous monoliths for adsorptive removal of dyes in water with easy recycling. Environmental Research, 2020, 186, 109608.	7.5	26
61	Synthesis of hierarchically porous inorganic–metal site-isolated nanocomposites. Chemical Communications, 2006, , 2539-2541.	4.1	25
62	Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. Journal of Materials Chemistry A, 2014, 2, 13479-13485.	10.3	25
63	Synthesis of ZnO nano-powders via a novel PVA-assisted freeze-drying process. RSC Advances, 2016, 6, 110349-110355.	3.6	25
64	Drug nanoparticles by emulsion-freeze-drying via the employment of branched block copolymer nanoparticles. Journal of Controlled Release, 2016, 222, 141-150.	9.9	25
65	Critical Parameters of Hexane + Carbon Monoxide + Hydrogen and Hexane + Methanol + Carbon Monoxide + Hydrogen Mixtures in the Hexane-Rich Region. Journal of Chemical & Engineering Data, 2001, 46, 1635-1637.	1.9	24
66	Formation of organic nanoparticles by solvent evaporation within porous polymeric materials. Chemical Communications, 2011, 47, 10001.	4.1	24
67	Solubility of 4-Aminosalicylic Acid in Supercritical Carbon Dioxide and Subcritical 1,1,1,2-Tetrafluoroethane. Journal of Chemical & Engineering Data, 2014, 59, 2095-2100.	1.9	22
68	Porous chitosan by crosslinking with tricarboxylic acid and tuneable release. SN Applied Sciences, 2020, 2, 1.	2.9	21
69	Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. Journal of Colloid and Interface Science, 2010, 350, 368-372.	9.4	19
70	Synthesis of Nanospheres-on-Microsphere Silica with Tunable Shell Morphology and Mesoporosity for Improved HPLC. Langmuir, 2014, 30, 12190-12199.	3.5	19
71	Compressed Fluid Sedimentation Polymerization. Macromolecules, 2003, 36, 5061-5064.	4.8	17
72	Preparation of aligned porous silica monolithic capillary columns and their evaluation for HPLC. Analytical Methods, 2012, 4, 3942.	2.7	16

#	Article	IF	CITATIONS
73	Multifunctional pH-sensitive micelles for tumor-specific uptake and cellular delivery. Polymer Chemistry, 2015, 6, 1373-1382.	3.9	16
74	Complex-Shaped Porous Cu Bodies Fabricated by Freeze-Casting and Vacuum Sintering. Metals, 2015, 5, 1821-1828.	2.3	15
75	One-step synthesis of protein-encapsulated microspheres in a porous scaffold by freeze-drying double emulsions and tuneable protein release. Chemical Communications, 2013, 49, 8833.	4.1	14
76	Nanofibrous microspheres via emulsion gelation and carbonization. Chemical Communications, 2015, 51, 16864-16867.	4.1	14
77	Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO ₂ macrobeads for efficient photodegradation of organic dyes and microbes. RSC Advances, 2018, 8, 29628-29636.	3.6	14
78	Hyperbranched Polyethylenimine-Tethered Multiple Emulsion-Templated Hierarchically Macroporous Poly(acrylic acid)–Al ₂ O ₃ Nanocomposite Beads for Water Purification. ACS Applied Materials & Interfaces, 2021, 13, 27400-27410.	8.0	14
79	Monodisperse sphere-on-sphere silica particles for fast HPLC separation of peptides and proteins. Analyst, The, 2014, 139, 5674-5677.	3.5	13
80	Porous silica spheres in macroporous structures and on nanofibres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4351-4370.	3.4	12
81	Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering C, 2015, 49, 390-399.	7.3	12
82	Spheres-on-sphere silica microspheres as matrix for horseradish peroxidase immobilization and detection of hydrogen peroxide. RSC Advances, 2015, 5, 38665-38672.	3.6	12
83	Synthesis of multiple-shelled organosilica hollow nanospheres via a dual-template method by using compressed CO 2. Microporous and Mesoporous Materials, 2017, 247, 66-74.	4.4	12
84	Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics, 2018, 1, 353-363.	2.6	12
85	Measurement of Critical Points and Phase Behavior of CH3OH + CO + CO2 Ternary Mixture. Journal of Chemical & Engineering Data, 2001, 46, 130-133.	1.9	11
86	Co-solvent and pressure effect on the thermal decomposition of 2,2′ azobis(isobutyronitrile) in supercritical CO2 using UV–Vis spectroscopy. Journal of Supercritical Fluids, 2001, 21, 227-232.	3.2	11
87	Supercritical Carbon Dioxide as a Green Solvent for Polymer Synthesis. , 2007, , 383-396.		10
88	Reduction-Controlled Release of Organic Nanoparticles from Disulfide Cross-linked Porous Polymer. Industrial & Engineering Chemistry Research, 2014, 53, 246-252.	3.7	10
89	Fabrication of Emulsion-Templated Poly(vinylsulfonic acid)–Ag Nanocomposite Beads with Hierarchical Multimodal Porosity for Water Cleanup. Langmuir, 2019, 35, 13165-13173.	3.5	10
90	Prototype sphere-on-sphere silica particles for the separation of large biomolecules. Journal of Chromatography A, 2016, 1431, 94-102.	3.7	9

#	Article	IF	CITATIONS
91	Formation of hydrophobic drug nanoparticles via ambient solvent evaporation facilitated by branched diblock copolymers. International Journal of Pharmaceutics, 2017, 533, 245-253.	5.2	9
92	Porous Carbon and Carbon/Metal Oxide Composites by Ice Templating and Subsequent Pyrolysis. Industrial & Engineering Chemistry Research, 2019, 58, 14312-14322.	3.7	9
93	Effect of CO2 and CHF3 on the Solubilization of Protein in Reverse Micelles. Journal of Colloid and Interface Science, 2000, 232, 269-272.	9.4	8
94	Determination and calculation for solubility of m-nitroaniline and its mixture in supercritical carbon dioxide. Chemical Engineering Research and Design, 2014, 92, 2806-2813.	5.6	7
95	Unimolecular branched block copolymer nanoparticles in methanol for the preparation of poorly water-soluble drug nanoparticles. Journal of Materials Chemistry B, 2017, 5, 423-427.	5.8	7
96	Direct formation of emulsions using waterâ€soluble porous polymers as sacrificial scaffolds. Journal of Chemical Technology and Biotechnology, 2010, 85, 1508-1514.	3.2	5
97	Perylene Diimide Nanoprobes for In Vivo Tracking of Mesenchymal Stromal Cells Using Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2020, 12, 27930-27939.	8.0	5
98	Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid and Polymer Science, 2018, 296, 951-960.	2.1	3
99	Formation of Organic Nanoparticles by Freeze-Drying and Their Controlled Release. Nanoscience and Nanotechnology Letters, 2009, 1, 185-189.	0.4	3
100	Poorly Water Soluble Drug Nanostructures via Surface Solvent Evaporation. Nano LIFE, 2015, 05, 1540005.	0.9	1
101	Silica Microspheres-in-Pores Composite Monoliths with Fluorescence and Potential for Water Remediation. Nanomaterials, 2021, 11, 2681.	4.1	1
102	Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1 <i>H</i> -isoindole-1,3(2 <i>H</i>)-dione – methanol (1/1/1), C ₁₂ H ₁₅ N ₇ O ₃ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, 237, 853-855.	0.3	1
103	Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	0
104	Microstructure and properties of Co–Al porous intermetallics fabricated by thermal explosion reaction. High Temperature Materials and Processes, 2021, 40, 141-150.	1.4	0
105	Polymer- and Carbon-Based Nanofibres for Energy Storage. Engineering Materials and Processes, 2017, , 307-335.	0.4	Ο
106	Crystal structure of <i>N</i> -((<i>Z</i>)-amino(((<i>E</i>)-amino(phenylamino)methylene)) Tj ETQq0 0 0 rgBT /(benzo[<i>f</i>]isoquinolino[3,4- <i>b</i>][1,8]naphthyridine – tetrahydrofurane (1/2/2), C ₆₀ H ₅₄ ClN ₁₁ O ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	Overlock 1 0.3	0 Tf 50 157 1 0