Jeroen Corver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827625/publications.pdf Version: 2024-02-01

		686830	580395
26	1,371	13	25
papers	1,371 citations	h-index	25 g-index
31	31	31	1567
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plasmids of Clostridioides difficile. Current Opinion in Microbiology, 2022, 65, 87-94.	2.3	8
2	New insights into the type A glycan modification of Clostridioides difficile flagellar protein flagellin C by phosphoproteomics analysis. Journal of Biological Chemistry, 2022, 298, 101622.	1.6	4
3	Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. Journal of Clinical Microbiology, 2022, 60, JCM0173721.	1.8	22
4	Phylogenetic analysis of the bacterial Pro-Pro-endopeptidase domain reveals a diverse family including secreted and membrane anchored proteins. Current Research in Microbial Sciences, 2021, 2, 100024.	1.4	2
5	A Bioluminescent Sensor for Rapid Detection of PPEP-1, a Clostridioides difficile Biomarker. Sensors, 2021, 21, 7485.	2.1	5
6	The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface. Journal of Bacteriology, 2020, 202, .	1.0	9
7	Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nature Communications, 2020, 11, 598.	5.8	79
8	Redefining the Clostridioides difficile σ ^B Regulon: σ ^B Activates Genes Involved in Detoxifying Radicals That Can Result from the Exposure to Antimicrobials and Hydrogen Peroxide. MSphere, 2020, 5, .	1.3	15
9	Clostridium difficile clade 3 (RT023) have a modified cell surface and contain a large transposable island with novel cargo. Scientific Reports, 2019, 9, 15330.	1.6	3
10	Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Scientific Reports, 2018, 8, 8181.	1.6	10
11	Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Frontiers in Microbiology, 2018, 9, 1242.	1.5	69
12	Discovery of a new Pro-Pro endopeptidase, PPEP-2, provides mechanistic insights into the differences in substrate specificity within the PPEP family. Journal of Biological Chemistry, 2018, 293, 11154-11165.	1.6	10
13	Covalent attachment and Proâ€Pro endopeptidase (PPEPâ€1)â€mediated release of <i>Clostridium difficile</i> cell surface proteins involved in adhesion. Molecular Microbiology, 2017, 105, 663-673.	1.2	13
14	A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism. Journal of Biological Chemistry, 2016, 291, 13286-13300.	1.6	14
15	<i>Clostridium difficile</i> secreted Proâ€Pro endopeptidase PPEPâ€1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. FEBS Letters, 2015, 589, 3952-3958.	1.3	59
16	A Novel Secreted Metalloprotease (CD2830) from Clostridium difficile Cleaves Specific Proline Sequences in LPXTG Cell Surface Proteins. Molecular and Cellular Proteomics, 2014, 13, 1231-1244.	2.5	71
17	The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile. Infection and Immunity, 2014, 82, 4222-4232.	1.0	25
18	Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Research. 2013. 41. 2382-2393.	6.5	15

#	Article	IF	CITATIONS
19	Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiology, 2012, 12, 130.	1.3	37
20	Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infection, Genetics and Evolution, 2012, 12, 1577-1585.	1.0	84
21	TcdC Does Not Significantly Repress Toxin Expression in Clostridium difficile 630ΔErm. PLoS ONE, 2012, 7, e43247.	1.1	64
22	Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology (United) Tj ETQq0 0 0 rgB	T /Qverloc 0.7	k_10 Tf 50 6
23	Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal, 2009, 6, 230.	1.4	40
24	Emergence of <i>Clostridium difficile</i> Infection Due to a New Hypervirulent Strain, Polymerase Chain Reaction Ribotype 078, Clinical Infectious Diseases, 2008, 47, 1162-1170.	2.9	577

25	GxxxG Motif of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Transmembrane Domain Is Not Involved in Trimerization and Is Not Important for Entry. Journal of Virology, 2007, 81, 8352-8355.	1.5	7
26	Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry. Journal of Virology, 2006, 80, 1302-1310.	1.5	75