Jeroen Corver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827625/publications.pdf

Version: 2024-02-01

686830 580395 1,371 26 13 25 h-index citations g-index papers 31 31 31 1567 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Emergence of <i>Clostridium difficile </i> Infection Due to a New Hypervirulent Strain, Polymerase Chain Reaction Ribotype 078. Clinical Infectious Diseases, 2008, 47, 1162-1170.	2.9	577
2	Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infection, Genetics and Evolution, 2012, 12, 1577-1585.	1.0	84
3	Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nature Communications, 2020, 11, 598.	5.8	79
4	Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry. Journal of Virology, 2006, 80, 1302-1310.	1.5	75
5	A Novel Secreted Metalloprotease (CD2830) from Clostridium difficile Cleaves Specific Proline Sequences in LPXTG Cell Surface Proteins. Molecular and Cellular Proteomics, 2014, 13, 1231-1244.	2.5	71
6	Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Frontiers in Microbiology, 2018, 9, 1242.	1.5	69
7	TcdC Does Not Significantly Repress Toxin Expression in Clostridium difficile 630Î"Erm. PLoS ONE, 2012, 7, e43247.	1.1	64
8	<i>Clostridium difficile</i> secreted Proâ€Pro endopeptidase PPEPâ€1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. FEBS Letters, 2015, 589, 3952-3958.	1.3	59
9	Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology (United) Tj ETQq1 1 0.78	84314 rgB ⁷	Г/Qyerlock 1
10	Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal, 2009, 6, 230.	1.4	40
11	Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiology, 2012, 12, 130.	1.3	37
12	The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile. Infection and Immunity, 2014, 82, 4222-4232.	1.0	25
13	Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. Journal of Clinical Microbiology, 2022, 60, JCM0173721.	1.8	22
14	Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Research, 2013, 41, 2382-2393.	6.5	15
15	Redefining the Clostridioides difficile $\dagger f < \sup B < \supB < \sup B < \sup B < \supB < \supB < \supB < B < $	1.3	15
16	A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism. Journal of Biological Chemistry, 2016, 291, 13286-13300.	1.6	14
17	Covalent attachment and Proâ€Pro endopeptidase (PPEPâ€1)â€mediated release of <i>Clostridium difficile</i> cell surface proteins involved in adhesion. Molecular Microbiology, 2017, 105, 663-673.	1.2	13
18	Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Scientific Reports, 2018, 8, 8181.	1.6	10

#	Article	lF	CITATIONS
19	Discovery of a new Pro-Pro endopeptidase, PPEP-2, provides mechanistic insights into the differences in substrate specificity within the PPEP family. Journal of Biological Chemistry, 2018, 293, 11154-11165.	1.6	10
20	The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface. Journal of Bacteriology, 2020, 202, .	1.0	9
21	Plasmids of Clostridioides difficile. Current Opinion in Microbiology, 2022, 65, 87-94.	2.3	8
22	GxxxG Motif of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Transmembrane Domain Is Not Involved in Trimerization and Is Not Important for Entry. Journal of Virology, 2007, 81, 8352-8355.	1.5	7
23	A Bioluminescent Sensor for Rapid Detection of PPEP-1, a Clostridioides difficile Biomarker. Sensors, 2021, 21, 7485.	2.1	5
24	New insights into the type A glycan modification of Clostridioides difficile flagellar protein flagellin C by phosphoproteomics analysis. Journal of Biological Chemistry, 2022, 298, 101622.	1.6	4
25	Clostridium difficile clade 3 (RT023) have a modified cell surface and contain a large transposable island with novel cargo. Scientific Reports, 2019, 9, 15330.	1.6	3
26	Phylogenetic analysis of the bacterial Pro-Pro-endopeptidase domain reveals a diverse family including secreted and membrane anchored proteins. Current Research in Microbial Sciences, 2021, 2, 100024.	1.4	2