Daisuke Yamane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827597/publications.pdf

Version: 2024-02-01

840776 794594 71 505 11 19 citations h-index g-index papers 71 71 71 318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of current density on micro-mechanical property of electrodeposited gold film evaluated by micro-compression. Surface and Coatings Technology, 2022, 436, 128315.	4.8	2
2	Electrodeposition and Micro-Mechanical Property Characterization of Nickel–Cobalt Alloys toward Design of MEMS Components. Electrochem, 2022, 3, 198-210.	3.3	3
3	Development and Characterization of Vertically Stacked Tactile Sensor With Hollow Structure. IEEE Sensors Journal, 2021, 21, 5809-5818.	4.7	10
4	Effective Young's Modulus of Complex Three Dimensional Multilayered Ti/Au Micro-Cantilevers Fabricated by Electrodeposition and the Temperature Dependency. Electrochem, 2021, 2, 216-223.	3.3	2
5	Energy Harvesting from Non-Stationary Vibrations Using a Low-Threshold Voltage-Boost Rectifier Circuit. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 228-232.	0.1	O
6	Electrodeposition of Ni-Co Alloys and Their Mechanical Properties by Micro-Vickers Hardness Test. Electrochem, 2021, 2, 1-9.	3.3	8
7	MEMS post-processed self-assembled electret for vibratory energy harvesters. Applied Physics Letters, 2021, 119, .	3.3	13
8	Co-Electrodeposition of Au–TiO2 Nanocomposite and the Micro-Mechanical Properties. Electrochem, 2020, 1, 388-393.	3.3	1
9	(Invited) CMOS-MEMS Based Microgravity Sensor and Its Application. ECS Transactions, 2020, 97, 91-108.	0.5	11
10	Sample geometry effect on mechanical property of gold micro-cantilevers by micro-bending test. MRS Communications, 2020, 10, 434-438.	1.8	5
11	Alloy Electroplating and Young's Modulus Characterization of AuCu Alloy Microcantilevers. Journal of the Electrochemical Society, 2020, 167, 082503.	2.9	2
12	Electrodeposition of Gold Alloys and the Mechanical Properties. , 2019, , .		1
13	High Strength Electrodeposited Au-Cu Alloys Evaluated by Bending Test toward Movable Micro-Components. ECS Journal of Solid State Science and Technology, 2019, 8, P412-P415.	1.8	2
14	Nanoscale Hierarchical Structure of Twins in Nanograins Embedded with Twins and the Strengthening Effect. Metals, 2019, 9, 987.	2.3	6
15	Long-term structure stability of Ti/Au layered micro-cantilever evaluated by vibration test. Microelectronic Engineering, 2019, 207, 33-36.	2.4	3
16	Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity. Sensors and Actuators A: Physical, 2019, 293, 167-177.	4.1	18
17	Cu-alloying effect on structure stability of electrodeposited gold-based micro-cantilever evaluated by long-term vibration test. Microelectronic Engineering, 2019, 215, 111001.	2.4	3
18	Strengthening of micro-cantilever by Au/Ti bi-layered structure evaluated by micro-bending test toward MEMS devices. Microelectronic Engineering, 2019, 213, 13-17.	2.4	3

#	Article	IF	Citations
19	Fabrication of Au-Cu Alloy/Ti Layered Micro-Cantilevers and the Long-Term Structure Stability. , 2019, , .		1
20	Extensive Sensitivity Enhancement in Stacked Capacitive Tactile Sensors., 2019,,.		0
21	<i>(i) (Invited) </i> MEMS Accelerometer Fabricated by Gold Multi-Layer Metal Technology. ECS Transactions, 2019, 92, 169-184.	0.5	5
22	High-Sensitivity Inertial Sensor Module to Measure Hidden Micro Muscular Sounds. , 2019, , .		3
23	A MEMS Accelerometer for Sub-mG Sensing. Sensors and Materials, 2019, 31, 2883.	0.5	7
24	Enhancement in structure stability of gold micro-cantilever by constrained fixed-end in MEMS devices. Microelectronic Engineering, 2018, 187-188, 105-109.	2.4	5
25	Au–Cu Alloys Prepared by Pulse Electrodeposition toward Applications as Movable Micro-Components in Electronic Devices. Journal of the Electrochemical Society, 2018, 165, D58-D63.	2.9	14
26	Sample size effect on micro-mechanical properties of gold electroplated with dense carbon dioxide. Surface and Coatings Technology, 2018, 350, 1065-1070.	4.8	8
27	A 0.18 -µm CMOS time-domain capacitive-sensor interface for sub-1mG MEMS accelerometers. IEICE Electronics Express, 2018, 15, 20171227-20171227.	0.8	1
28	Promoted bending strength in micro-cantilevers composed of nanograined gold toward MEMS applications. Microelectronic Engineering, 2018, 196, 20-24.	2.4	10
29	Microgravity Generation Using Tilting Board for Resolution Evaluation of MEMS Accelerometer. Sensors and Materials, 2018, 30, 2919.	0.5	0
30	High-Strength Electroplated Au–Cu Alloys as Micro-Components in MEMS Devices. Journal of the Electrochemical Society, 2017, 164, D244-D247.	2.9	9
31	Deformation behavior of electroplated gold composed of nano-columnar grains embedded in micro-columnar textures. Materials Letters, 2017, 202, 82-85.	2.6	4
32	Micro-bending testing of electrodeposited gold for applications as movable components in MEMS devices. Microelectronic Engineering, 2017, 180, 15-19.	2.4	17
33	Tensile tests of micro-specimens composed of electroplated gold. Microelectronic Engineering, 2017, 174, 6-10.	2.4	11
34	Long-term vibration characteristics of MEMS inertial sensors by multi-layer metal technology. , 2017, ,		2
35	A study on young's modulus of electroplated gold cantilevers for MEMS devices. , 2017, , .		5
36	A design of spring constant arranged for MEMS accelerometer by multi-layer metal technology. , 2016,		3

#	Article	IF	Citations
37	Brittle Fracture of Electrodeposited Gold Observed by Micro-Compression. Materials Transactions, 2016, 57, 1257-1260.	1.2	6
38	A damping constant model for proof-mass structure design of MEMS inertial sensor by multi-layer metal technology. , 2016, , .		3
39	Pulse electroplating of ultra-fine grained Au films with high compressive strength. Electrochemistry Communications, 2016, 67, 51-54.	4.7	33
40	Enhancement of mechanical strength in Au films electroplated with supercritical carbon dioxide. Electrochemistry Communications, 2016, 72, 126-130.	4.7	11
41	Evaluation and modeling of adhesion layer in shock-protection structure for MEMS accelerometer. Microelectronics Reliability, 2016, 66, 78-84.	1.7	3
42	Development of high sensitivity CMOS-MEMS inertia sensor and its application to early-stage diagnosis of Parkinson's disease., 2016,,.		0
43	Development of high sensitivity CMOS-MEMS inertia sensor and its application to early-stage diagnosis of Parkinson's disease. , 2016, , .		1
44	(Invited) A 1-mG MEMS Sensor. ECS Transactions, 2016, 72, 7-14.	0.5	3
45	Structure stability of high aspect ratio Ti/Au two-layer cantilevers for applications in MEMS accelerometers. Microelectronic Engineering, 2016, 159, 90-93.	2.4	12
46	A dual-axis MEMS capacitive inertial sensor with high-density proof mass. Microsystem Technologies, 2016, 22, 459-464.	2.0	18
47	(Invited) A Sub-1G MEMS Sensor. ECS Transactions, 2015, 66, 131-138.	0.5	2
48	A sub-1G CMOS-MEMS accelerometer. , 2015, , .		5
49	A 0.1 G-to-20 G integrated MEMS inertial sensor. Japanese Journal of Applied Physics, 2015, 54, 087202.	1.5	9
50	An Evaluation Method of Brownian Noise in Highly Sensitive Capacitive Sensors. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 142-143.	0.1	3
51	A 1mG-to-20G integrated MEMS inertial sensor. , 2014, , .		0
52	Electrical Impedance Monitoring of Photothermal Porated Mammalian Cells. Journal of the Association for Laboratory Automation, 2014, 19, 50-59.	2.8	12
53	A dual-axis MEMS inertial sensor using multi-layered high-density metal for an arrayed CMOS-MEMS accelerometer. , 2014, , .		3
54	An arrayed accelerometer device of a wide range of detection for integrated CMOS–MEMS technology. Japanese Journal of Applied Physics, 2014, 53, 027202.	1.5	11

#	Article	IF	Citations
55	Integrated CMOS-MEMS Technology and Its Applications. ECS Transactions, 2014, 61, 21-39.	0.5	26
56	Design of sub-1g microelectromechanical systems accelerometers. Applied Physics Letters, 2014, 104, .	3.3	64
57	An 8 channel, 20 V output CMOS switching driver with 3.3 V power supply using triple-well biasing techniques for integrated MEMS device control. Japanese Journal of Applied Physics, 2014, 53, 04EE13.	1.5	5
58	A capacitive CMOS–MEMS sensor designed by multi-physics simulation for integrated CMOS–MEMS technology. Japanese Journal of Applied Physics, 2014, 53, 04EE15.	1.5	7
59	Sub-1G MEMS accelerometer., 2013,,.		2
60	Novel Sensor Structure and Its Evaluation for Integrated Complementary Metal Oxide Semiconductor Microelectromechanical Systems Accelerometer. Japanese Journal of Applied Physics, 2013, 52, 06GL04.	1.5	23
61	Real-time monitoring of photothermal porated mammalian cells by electric impedance sensors. , 2012, , .		0
62	Monolithic integration of passive RF components by MEMS. , 2011, , .		1
63	A Ku-band Dual-SPDT RF-MEMS Switch by Double-Side SOI Bulk Micromachining. Journal of Microelectromechanical Systems, 2011, 20, 1211-1221.	2.5	18
64	A Fabrication Process of MEMS Coplanar Waveguides Using a Thick Plated Gold Layer as DRIE Mask. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 130-131.	0.1	0
65	An SOI bulk-micromachined dual SPDT RF-MEMS switch by layer-wise separation design of waveguide and switching mechanism. IEICE Electronics Express, 2010, 7, 80-85.	0.8	5
66	A 12GHz bulk-micromachined RF-MEMS phase shifter by SOI layer-separation design. IEICE Electronics Express, 2010, 7, 1785-1789.	0.8	1
67	Development of a Dual-SPDT RF-MEMS switch for Ku-band. , 2010, , .		6
68	Development of Multi-User Multi-Chip SOI CMOS-MEMS Processes. , 2009, , .		8
69	A dual-SPDT RF-MEMS switch on a small-sized LTCC phase shifter for Ku-band operation. , 2009, , .		2
70	A Phase Shifter by LTCC Substrate with an RF-MEMS Switch. , 2008, , .		3
71	Multi-Physics Simulation Platform and Multi-Layer Metal Technology for CMOS-MEMS Accelerometer with Gold Proof Mass. , 0, , .		1