Maria Charalambides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827533/publications.pdf

Version: 2024-02-01

279798 361022 63 1,422 23 35 citations g-index h-index papers 63 63 63 995 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determination of the Constitutive Constants of Non-Linear Viscoelastic Materials. Mechanics of Time-Dependent Materials, 2004, 8, 255-268.	4.4	116
2	On the mechanics of wire cutting of cheese. Engineering Fracture Mechanics, 2005, 72, 931-946.	4.3	74
3	Modelling and experimental characterisation of the rate dependent fracture properties of gelatine gels. Food Hydrocolloids, 2015, 46, 180-190.	10.7	71
4	Mechanical characterization and micromechanical modeling of bread dough. Journal of Rheology, 2013, 57, 249-272.	2.6	66
5	A study of the influence of ageing on the mechanical properties of Cheddar cheese. Journal of Materials Science, 1995, 30, 3959-3967.	3.7	58
6	Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method. Computational Materials Science, 2015, 110, 91-101.	3.0	55
7	Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. International Journal of Solids and Structures, 2017, 109, 46-62.	2.7	53
8	Large deformation extensional rheology of bread dough. Rheologica Acta, 2006, 46, 239-248.	2.4	50
9	Experimental and numerical investigation of high velocity soft impact loading on aircraft materials. Aerospace Science and Technology, 2019, 90, 44-58.	4.8	47
10	Biaxial deformation of dough using the bubble inflation technique. I. Experimental. Rheologica Acta, 2002, 41, 532-540.	2.4	45
11	Effect of friction on uniaxial compression of bread dough. Journal of Materials Science, 2005, 40, 3375-3381.	3.7	43
12	Determination of large deformation and fracture behaviour of starch gels from conventional and wire cutting experiments. Journal of Materials Science, 2009, 44, 4976-4986.	3.7	43
13	A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans. Nature Food, 2020, 1, 693-704.	14.0	37
14	The analysis of the frictional effect on stress - strain data from uniaxial compression of cheese. Journal of Materials Science, 2001, 36, 2313-2321.	3.7	36
15	Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates. International Journal of Impact Engineering, 2018, 120, 150-170.	5.0	33
16	Biaxial deformation of dough using the bubble inflation technique. II. Numerical modelling. Rheologica Acta, 2002, 41, 541-548.	2.4	28
17	Large strain time dependent behavior of cheese. Journal of Rheology, 2003, 47, 701-716.	2.6	28
18	Advancing mechanical recycling of multilayer plastics through finite element modelling and environmental policy. Resources, Conservation and Recycling, 2021, 166, 105371.	10.8	27

#	Article	IF	CITATIONS
19	On modeling the large strain fracture behaviour of soft viscous foods. Physics of Fluids, 2017, 29, .	4.0	26
20	Sheeting of wheat flour dough. International Journal of Food Science and Technology, 2007, 42, 699-707.	2.7	25
21	Micromechanical models for stiffness prediction of alumina trihydrate (ATH) reinforced poly (methyl) Tj ETQq1 Technology, 2009, 69, 2015-2023.	1 0.784314 7.8	rgBT /Overlo 25
22	Image-based modelling of binary composites. Computational Materials Science, 2012, 64, 183-186.	3.0	25
23	Modelling the microstructural evolution and fracture of a brittle confectionery wafer in compression. Innovative Food Science and Emerging Technologies, 2014, 24, 48-60.	5.6	24
24	Fracture toughness characterization of phenolic resin and its composite. Polymer Composites, 1995, 16, 17-28.	4.6	23
25	Tensile properties of latex paint films with TiO2Âpigment. Mechanics of Time-Dependent Materials, 2009, 13, 149-161.	4.4	23
26	Cross-European initial survey on the use of mathematical models in food industry. Journal of Food Engineering, 2019, 261, 109-116.	5.2	23
27	Measurement of molten chocolate friction under simulated tongue-palate kinematics: Effect of cocoa solids content and aeration. Current Research in Food Science, 2020, 3, 304-313.	5.8	21
28	On modelling the constitutive and damage behaviour of highly non-linear bio-composites – Mesh sensitivity of the viscoplastic-damage law computations. International Journal of Plasticity, 2019, 114, 40-62.	8.8	20
29	Influence of the inorganic phase concentration and geometry on the viscoelastic properties of latex coatings through the glass-transition. Polymer, 2011, 52, 1662-1673.	3.8	19
30	Fracture investigation in starch-based foods. Interface Focus, 2016, 6, 20160005.	3.0	19
31	Effect of micro-aeration on the mechanical behaviour of chocolates and implications for oral processing. Food and Function, 2021, 12, 4864-4886.	4.6	18
32	A novel essential work of fracture experimental methodology for highly dissipative materials. Polymer, 2017, 117, 167-182.	3.8	17
33	Food modelling strategies and approaches for knowledge transfer. Trends in Food Science and Technology, 2022, 120, 363-373.	15.1	16
34	Computer simulations of food oral processing to engineer teeth cleaning. Nature Communications, 2019, 10, 3571.	12.8	15
35	Prediction of delamination in multilayer artist paints under low amplitude fatigue loading. Engineering Fracture Mechanics, 2013, 112-113, 41-57.	4.3	13
36	Effect of structure on the mechanical and physical properties of chocolate considering time scale phenomena occurring during oral processing. Food Structure, 2022, 31, 100244.	4. 5	13

#	Article	IF	CITATIONS
37	Eulerian-Lagrangian finite element modelling of food flow-fracture in the stomach to engineer digestion. Innovative Food Science and Emerging Technologies, 2020, 66, 102510.	5.6	12
38	Characterisation of non-linear viscoelastic foods by the indentation technique. Rheologica Acta, 2004, 44, 47-54.	2.4	11
39	Toughening and stiffening of starch food extrudates through the addition of cellulose fibres and minerals. Food Hydrocolloids, 2018, 84, 515-528.	10.7	11
40	Experimental and numerical evaluation of the effect of micro-aeration on the thermal properties of chocolate. Food and Function, 2022, 13, 4993-5010.	4.6	11
41	Development of an image-based numerical model for predicting the microstructure–property relationship in alumina trihydrate (ATH) filled poly(methyl methacrylate) (PMMA). International Journal of Fracture, 2018, 211, 125-148.	2.2	10
42	Modelling the deformation of a confectionery wafer as a non-uniform sandwich structure. Journal of Materials Science, 2013, 48, 2462-2478.	3.7	9
43	Mechanical and microstructural changes of cheese cracker dough during baking. LWT - Food Science and Technology, 2017, 86, 148-158.	5.2	9
44	Quantifying the differences in structure and mechanical response of confectionery products resulting from the baking and extrusion processes. Journal of Food Engineering, 2018, 238, 112-121.	5.2	9
45	Mechanical Characterisation and modelling of the rolling process of potato-based dough. Journal of Food Engineering, 2020, 278, 109943.	5.2	9
46	Development of computational design tools for characterising and modelling cutting in ultra soft solids. Extreme Mechanics Letters, 2020, 40, 100964.	4.1	8
47	Mechanical characterization of the nitrocellulose-based visco-hyperelastic binder in polymer bonded explosives. Physics of Fluids, 2020, 32, 023103.	4.0	7
48	A numerical investigation of interfacial and channelling crack growth rates under low-cycle fatigue in bi-layer materials relevant to cultural heritage. Journal of Cultural Heritage, 2021, 49, 70-78.	3.3	7
49	Hierarchical multi-scale models for mechanical response prediction of highly filled elastic–plastic and viscoplastic particulate composites. Computational Materials Science, 2020, 181, 109734.	3.0	6
50	The effects of strain rate and temperature on commercial acrylic artist paints aged one year to decades. Applied Physics A: Materials Science and Processing, 2015, 121, 823-835.	2.3	5
51	Modelling Processes and Products in the Cereal Chain. Foods, 2021, 10, 82.	4.3	4
52	The mechanical properties of model-compacted tablets. Journal of Materials Science, 2008, 43, 7171-7178.	3.7	3
53	Micromechanical modelling of alumina trihydrate filled poly (methyl methacrylate) composites. International Journal of Materials and Structural Integrity, 2013, 7, 31.	0.1	3
54	The Fracture Toughness of a Highly Filled Polymer Composite. , 2011, , 447-459.		3

#	Article	IF	CITATIONS
55	A microstructure image-based numerical model for predicting the fracture toughness of alumina trihydrate (ATH) ¡¬-led poly(methyl methacrylate) (PMMA) composites. Composites Part B: Engineering, 2022, 232, 109632.	12.0	3
56	Towards optimisation of rolling process of potato dough: Effect of processing on the microstructure and the mechanical properties. Journal of Food Engineering, 2021, 291, 110314.	5.2	2
57	Characterisation of Fracture Behaviour of Starch Gels Using Conventional Fracture Mechanics and Wire Cutting Tests. AIP Conference Proceedings, 2008, , .	0.4	1
58	Experimental and numerical investigation of ram extrusion of bread dough. AIP Conference Proceedings, $2016, , .$	0.4	1
59	A comparison of the mechanical and sensory properties of baked and extruded confectionery products. AIP Conference Proceedings, 2017, , .	0.4	1
60	Chewing as a forming application: A viscoplastic damage law in modelling food oral breakdown. AIP Conference Proceedings, $2017, \ldots$	0.4	1
61	A methodology for the use of alkyd paint in thermally aged easel painting reconstructions for mechanical testing. Journal of Cultural Heritage, 2022, 55, 237-244.	3.3	1
62	Characterisation of Large Deformation Behaviour of Starch Gels Using Compression and Indentation Techniques. AIP Conference Proceedings, 2008, , .	0.4	0
63	A micromechanics model for bread dough. , 2015, , .		0