David Kimelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827122/publications.pdf Version: 2024-02-01

DAVID KIMELMAN

#	Article	IF	CITATIONS
1	A homeobox gene essential for zebrafish notochord development. Nature, 1995, 378, 150-157.	13.7	441
2	The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell, 1987, 48, 399-407.	13.5	311
3	A Dominant-Negative Form of p63 Is Required for Epidermal Proliferation in Zebrafish. Developmental Cell, 2002, 2, 607-616.	3.1	206
4	Canonical Wnt Signaling Dynamically Controls Multiple Stem Cell Fate Decisions during Vertebrate Body Formation. Developmental Cell, 2012, 22, 223-232.	3.1	203
5	Mesoderm induction: from caps to chips. Nature Reviews Genetics, 2006, 7, 360-372.	7.7	184
6	Regulation of Canonical Wnt Signaling by Brachyury Is Essential for Posterior Mesoderm Formation. Developmental Cell, 2008, 15, 121-133.	3.1	180
7	Tcf4 can specifically recognize beta-catenin using alternative conformations. Nature Structural Biology, 2001, 8, 1048-1052.	9.7	177
8	Wnt Signaling and the Evolution of Embryonic Posterior Development. Current Biology, 2009, 19, R215-R219.	1.8	159
9	Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development (Cambridge), 2005, 132, 2333-2343.	1.2	141
10	Move it or lose it: axis specification in Xenopus. Development (Cambridge), 2004, 131, 3491-3499.	1.2	135
11	Brachyury establishes the embryonic mesodermal progenitor niche. Genes and Development, 2010, 24, 2778-2783.	2.7	123
12	The homeobox genes <i>vox</i> and <i>vent</i> are redundant repressors of dorsal fates in zebrafish. Development (Cambridge), 2001, 128, 2407-2420.	1.2	100
13	Sustained Bmp signaling is essential for cloaca development in zebrafish. Development (Cambridge), 2006, 133, 2275-2284.	1.2	88
14	<i>hrT</i> is required for cardiovascular development in zebrafish. Development (Cambridge), 2002, 129, 5093-5101.	1.2	77
15	One-Eyed Pinhead and Spadetail are essential for heart and somite formation. Nature Cell Biology, 2002, 4, 821-825.	4.6	74
16	Tales of Tails (and Trunks). Current Topics in Developmental Biology, 2016, 116, 517-536.	1.0	74
17	Rho-regulated Myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development (Cambridge), 2009, 136, 2375-2384.	1.2	67
18	Anterior–posterior patterning in early development: three strategies. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 253-266.	5.9	58

DAVID KIMELMAN

#	Article	IF	CITATIONS
19	Restricted expression of <i>cdc25a</i> in the tailbud is essential for formation of the zebrafish posterior body. Genes and Development, 2014, 28, 384-395.	2.7	57
20	BMP-4 Regulates the Dorsal–Ventral Differences in FGF/MAPKK-Mediated Mesoderm Induction inXenopus. Developmental Biology, 1995, 172, 242-252.	0.9	55
21	Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes and Development, 2007, 21, 1559-1571.	2.7	54
22	Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nature Communications, 2016, 7, 10590.	5.8	54
23	Spatial regulation offloating head expression in the developing notochord. Developmental Dynamics, 1997, 209, 156-165.	0.8	52
24	Laminin α5 is essential for the formation of the zebrafish fins. Developmental Biology, 2007, 311, 369-382.	0.9	51
25	Interplay between FGF, one-eyed pinhead, and T-box transcription factors during zebrafish posterior development. Developmental Biology, 2003, 264, 456-466.	0.9	50
26	Transdifferentiation of Fast Skeletal Muscle Into Functional Endothelium in Vivo by Transcription Factor Etv2. PLoS Biology, 2013, 11, e1001590.	2.6	48
27	The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes and Development, 2006, 20, 1923-1932.	2.7	47
28	Cdc25 and the importance of G ₂ control. Cell Cycle, 2014, 13, 2165-2171.	1.3	46
29	Wnt signaling and <i>tbx16</i> form a bistable switch to commit bipotential progenitors to mesoderm. Development (Cambridge), 2015, 142, 2499-507.	1.2	44
30	Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors. Developmental Biology, 2015, 406, 172-185.	0.9	40
31	Bmp inhibition is necessary for post-gastrulation patterning and morphogenesis of the zebrafish tailbud. Developmental Biology, 2009, 329, 55-63.	0.9	39
32	Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Developmental Biology, 2011, 354, 102-110.	0.9	38
33	Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1. ELife, 2017, 6, .	2.8	36
34	Combinatorial signaling in development. BioEssays, 1994, 16, 577-581.	1.2	26
35	<i>hox13</i> genes are required for mesoderm formation and axis elongation during early zebrafish development. Development (Cambridge), 2020, 147,	1.2	18
36	Bmp Signaling: Turning a Half into a Whole. Cell, 2005, 123, 982-984.	13.5	13

3

DAVID KIMELMAN

#	Article	IF	CITATIONS
37	Identification of in vivo Hox13-binding sites reveals an essential locus controlling zebrafish brachyury expression. Development (Cambridge), 2021, 148, .	1.2	12
38	Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development. PLoS ONE, 2010, 5, e10712.	1.1	11
39	A novel coldâ€sensitive mutant of <i>ntla</i> reveals temporal roles of brachyury in zebrafish. Developmental Dynamics, 2016, 245, 874-880.	0.8	8
40	Mesoderm Induction and Patterning. Results and Problems in Cell Differentiation, 2002, 40, 15-27.	0.2	8
41	Cell shape regulation by Gravin requires N-terminal membrane effector domains. Biochemical and Biophysical Research Communications, 2008, 375, 512-516.	1.0	6
42	Squinting at the Zebrafish Axis. Developmental Cell, 2006, 10, 6-7.	3.1	5
43	Ground, Path, and Fruition: Teaching Zebrafish Development to Tibetan Buddhist Monks in India. Zebrafish, 2018, 15, 648-651.	0.5	3
44	Establishing The Body Plan. , 2020, , 81-88.		3
45	On the Fast Track to Organizer Gene Expression. Developmental Cell, 2010, 19, 190-192.	3.1	1