Katarzyna Mlyniec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6825364/publications.pdf

Version: 2024-02-01

257101 301761 1,817 42 24 39 citations g-index h-index papers 49 49 49 2103 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 2017, 25, 11-24.	1.9	413
2	Essential elements in depression and anxiety. Part I. Pharmacological Reports, 2014, 66, 534-544.	1.5	122
3	Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacological Reports, 2012, 64, 249-255.	1.5	80
4	Essential elements in depression and anxiety. Part II. Pharmacological Reports, 2015, 67, 187-194.	1.5	74
5	Zinc as a marker of affective disorders. Pharmacological Reports, 2013, 65, 1512-1518.	1.5	66
6	The involvement of the GPR39-Zn(2+)-sensing receptor in the pathophysiology of depression. Studies in rodent models and suicide victims. Neuropharmacology, 2014, 79, 290-297.	2.0	66
7	GPR39 (Zinc Receptor) Knockout Mice Exhibit Depression-Like Behavior and CREB/BDNF Down-Regulation in the Hippocampus. International Journal of Neuropsychopharmacology, 2015, 18, .	1.0	66
8	Time course of zinc deprivation-induced alterations of mice behavior in the forced swim test. Pharmacological Reports, 2012, 64, 567-575.	1.5	62
9	Zinc in the Glutamatergic Theory of Depression. Current Neuropharmacology, 2015, 13, 505-513.	1.4	60
10	Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity. Neural Plasticity, 2017, 2017, 1-18.	1.0	58
11	The role of the GPR39 receptor in zinc deficient-animal model of depression. Behavioural Brain Research, 2013, 238, 30-35.	1.2	56
12	The role of glutamatergic, GABA-ergic, and cholinergic receptors in depression and antidepressant-like effect. Pharmacological Reports, 2016, 68, 443-450.	1.5	54
13	Zinc signaling and epilepsy. , 2019, 193, 156-177.		52
14	Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 56, 254-263.	2.5	43
15	GPR39 Zn2+-sensing receptor: A new target in antidepressant development?. Journal of Affective Disorders, 2015, 174, 89-100.	2.0	38
16	Berberine produces antidepressant-like effects in ovariectomized mice. Scientific Reports, 2017, 7, 1310.	1.6	37
17	GPR39 up-regulation after selective antidepressants. Neurochemistry International, 2013, 62, 936-939.	1.9	34
18	Zinc deficiency alters responsiveness to antidepressant drugs in mice. Pharmacological Reports, 2013, 65, 579-592.	1.5	32

#	Article	IF	CITATIONS
19	Targeting zinc metalloenzymes in coronavirus disease 2019. British Journal of Pharmacology, 2020, 177, 4887-4898.	2.7	32
20	Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors. Pharmacological Reports, 2008, 60, 991-5.	1.5	31
21	Study of antidepressant drugs in GPR39 (zinc receptorâ^'/â^') knockout mice, showing no effect of conventional antidepressants, but effectiveness of NMDA antagonists. Behavioural Brain Research, 2015, 287, 135-138.	1.2	30
22	Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotoxicity Research, 2016, 29, 143-154.	1.3	30
23	Investigation of the GPR39 zinc receptor following inhibition of monoaminergic neurotransmission and potentialization of glutamatergic neurotransmission. Brain Research Bulletin, 2015, 115, 23-29.	1.4	28
24	Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex. Behavioural Brain Research, 2015, 287, 323-330.	1.2	27
25	Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist. Journal of Affective Disorders, 2016, 201, 179-184.	2.0	27
26	Up-regulation of the GPR39 Zn(2+)-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice. Pharmacological Reports, 2015, 67, 1135-1140.	1.5	24
27	Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008. Journal of Affective Disorders, 2019, 245, 325-334.	2.0	23
28	Evaluation of anti-inflammatory and ulcerogenic potential of zinc–ibuprofen and zinc–naproxen complexes in rats. Inflammopharmacology, 2017, 25, 653-663.	1.9	19
29	Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. Current Neuropharmacology, 2019, 18, 2-13.	1.4	19
30	Interaction between Zinc, GPR39, BDNF and Neuropeptides in Depression. Current Neuropharmacology, 2021, 19, 2012-2019.	1.4	17
31	The role of melatonin, neurokinin, neurotrophic tyrosine kinase and glucocorticoid receptors in antidepressant-like effect. Pharmacological Reports, 2017, 69, 546-554.	1.5	16
32	The Role of Elements in Anxiety. Vitamins and Hormones, 2017, 103, 295-326.	0.7	15
33	Evaluation of the role of NMDA receptor function in antidepressant-like activity. A new study with citalopram and fluoxetine in the forced swim test in mice. Pharmacological Reports, 2015, 67, 490-493.	1.5	14
34	Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder. Journal of Neuroimmunology, 2016, 291, 11-17.	1.1	12
35	Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Research Bulletin, 2021, 170, 146-154.	1.4	11
36	Early lifetime zinc supplementation protects zinc-deficient diet-induced alterations. Pharmacological Reports, 2010, 62, 1211-1217.	1.5	9

#	Article	IF	CITATIONS
37	GPCR oligomerization as a target for antidepressants: Focus on GPR39. , 2021, 225, 107842.		7
38	Neuronal correlates underlying the role of the zinc sensing receptor (GPR39) in passive-coping behaviour. Neuropharmacology, 2021, 198, 108752.	2.0	6
39	Alterations of Serum Magnesium Concentration in Animal Models of Seizures and Epilepsy—The Effects of Treatment with a GPR39 Agonist and Knockout of the Gpr39 Gene. Cells, 2022, 11, 1987.	1.8	5
40	Chronic but not acute antidepresant treatment alters serum zinc/copper ratio under pathological/zinc-deficient conditions in mice. Journal of Physiology and Pharmacology, 2014, 65, 673-8.	1.1	1
41	P.1.020 The role of CREB/BDNF/TrkB signalling in the zinc deficiency model of depression. European Neuropsychopharmacology, 2013, 23, S19-S20.	0.3	O
42	P.1.g.105 Effect of dietary zinc deprivation on expression of NMDA receptor subunits and depressive-like behaviour: a time-course study. European Neuropsychopharmacology, 2014, 24, S265-S266.	0.3	0