Benudhar Punji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6825217/publications.pdf

Version: 2024-02-01

57	2,230	26	45
papers	citations	h-index	g-index
58	58	58	1912
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advances in the Iron-Catalyzed Direct Functionalizations of ÂHeterocycles. Synlett, 2023, 34, 683-697.	1.0	7
2	Manganeseâ€Catalyzed C(sp ²)â^'H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
3	Unactivated Alkyl Halides in Transition-Metal-Catalyzed C–H Bond Alkylation. ACS Catalysis, 2021, 11, 3268-3292.	5.5	45
4	Advances in C(<i>sp</i> ²)â^'H/C(<i>sp</i> ²)â^'H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1998-2022.	2.1	36
5	Advances in Transition-Metal-Catalyzed C–H Bond Oxygenation of Amides. Synthesis, 2021, 53, 2935-2946.	1.2	10
6	Pd(II)-Catalyzed Chemoselective Acetoxylation of C(sp ²)â€"H and C(sp ³)â€"H Bonds in Tertiary Amides. Journal of Organic Chemistry, 2021, 86, 8172-8181.	1.7	9
7	Nickelâ€Catalyzed Câ°'H Bond Functionalization of Azoles and Indoles. Chemical Record, 2021, 21, 3573-3588.	2.9	13
8	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
9	Ni(II)-Catalyzed Intramolecular C–H/C–H Oxidative Coupling: An Efficient Route to Functionalized Cycloindolones and Indenoindolones. ACS Catalysis, 2021, 11, 12384-12393.	5.5	5
10	Achiral and chiral NNN-pincer nickel complexes with oxazolinyl backbones: application in transfer hydrogenation of ketones. New Journal of Chemistry, 2021, 45, 11927-11936.	1.4	0
11	Nickelâ€Catalyzed Asymmetric Hydrogenation for the Synthesis of Key Sitagliptin Intermediate. Chemistry - an Asian Journal, 2021, , .	1.7	6
12	Câ^'H Functionalization of Indoles by 3d Transitionâ€Metal Catalysis. Asian Journal of Organic Chemistry, 2020, 9, 326-342.	1.3	62
13	MnBr ₂ -Catalyzed Direct and Site-Selective Alkylation of Indoles and Benzo[<i>h</i> jquinoline. Organic Letters, 2020, 22, 4643-4647.	2.4	21
14	Iron-Catalyzed C(sp ²)â€"H Alkylation of Indolines and Benzo[<i>h</i>]quinoline with Unactivated Alkyl Chlorides through Chelation Assistance. ACS Catalysis, 2020, 10, 7312-7321.	5.5	40
15	3 d Transition Metalâ€Catalyzed Hydrogenation of Nitriles and Alkynes. Chemistry - an Asian Journal, 2020, 15, 690-708.	1.7	43
16	Copperâ€Catalyzed Direct Arylation of Indoles and Related (Hetero)arenes: A Ligandless and Solventâ€free Approach. Advanced Synthesis and Catalysis, 2020, 362, 2534-2540.	2.1	13
17	Nickel-catalyzed C–H alkylation of indoles with unactivated alkyl chlorides: evidence of a Ni(<scp>i</scp>)/Ni(<scp>iii</scp>) pathway. Chemical Science, 2019, 10, 9493-9500.	3.7	42
18	Nickel-Catalyzed C(2)–H Arylation of Indoles with Aryl Chlorides under Neat Conditions. Journal of Organic Chemistry, 2019, 84, 12800-12808.	1.7	19

#	Article	IF	Citations
19	Scope and Mechanistic Aspect of Nickel-Catalyzed Alkenylation of Benzothiazoles and Related Azoles with Styryl Bromides. Organometallics, 2019, 38, 2422-2430.	1.1	8
20	Selective Synthesis of Secondary Amines from Nitriles by a Userâ€Friendly Cobalt Catalyst. Advanced Synthesis and Catalysis, 2019, 361, 3930-3936.	2.1	25
21	Nickel-Catalyzed Straightforward and Regioselective C–H Alkenylation of Indoles with Alkenyl Bromides: Scope and Mechanistic Aspect. ACS Catalysis, 2019, 9, 431-441.	5 . 5	45
22	Mechanistic Aspects of Pincer Nickel(II)-Catalyzed C–H Bond Alkylation of Azoles with Alkyl Halides. Organometallics, 2018, 37, 1017-1025.	1.1	23
23	Nickelâ€Catalyzed Regioselective C(2)â^H Difluoroalkylation of Indoles with Difluoroalkyl Bromides. Chemistry - an Asian Journal, 2018, 13, 2516-2521.	1.7	25
24	Synthesis of quinolinyl-based pincer copper(<scp>ii</scp>) complexes: an efficient catalyst system for Kumada coupling of alkyl chlorides and bromides with alkyl Grignard reagents. Dalton Transactions, 2018, 47, 16747-16754.	1.6	10
25	Mechanism of Nickel(II)-Catalyzed C(2)–H Alkynylation of Indoles with Alkynyl Bromide. Organometallics, 2018, 37, 2037-2045.	1.1	23
26	A Copper―and Phosphineâ€Free Nickel(II)â€Catalyzed Method for Câ^'H Bond Alkynylation of Benzothiazoles and Related Azoles. Asian Journal of Organic Chemistry, 2018, 7, 1390-1395.	1.3	9
27	Nickel-Catalyzed C(sp ²)–H/C(sp ³)–H Oxidative Coupling of Indoles with Toluene Derivatives. ACS Catalysis, 2017, 7, 4202-4208.	5. 5	74
28	Expeditious and Solventâ€Free Nickelâ€Catalyzed Câ^'H Arylation of Arenes and Indoles. ChemSusChem, 2017, 10, 2242-2248.	3.6	37
29	Development of (quinolinyl)amido-based pincer palladium complexes: a robust and phosphine-free catalyst system for C–H arylation of benzothiazoles. New Journal of Chemistry, 2017, 41, 3543-3554.	1.4	19
30	A General Nickelâ€Catalyzed Method for Câ^'H Bond Alkynylation of Heteroarenes Through Chelation Assistance. Chemistry - A European Journal, 2017, 23, 2907-2914.	1.7	45
31	Synthesis and characterization of six-membered pincer nickelacycles and application in alkylation of benzothiazole. Journal of Chemical Sciences, 2017, 129, 1161-1169.	0.7	4
32	Palladacycles for Directed and Nondirected C H Bond Functionalization of (Hetero)arenes. , 2017, , 357-415.		0
33	Synthesis of Quinoline-Based NNN-Pincer Nickel(II) Complexes: A Robust and Improved Catalyst System for C–H Bond Alkylation of Azoles with Alkyl Halides. Organometallics, 2016, 35, 1785-1793.	1.1	38
34	Unified Strategy for Nickel-Catalyzed C-2 Alkylation of Indoles through Chelation Assistance. ACS Catalysis, 2016, 6, 5666-5672.	5 . 5	72
35	Mechanistic Insights into Pincer-Ligated Palladium-Catalyzed Arylation of Azoles with Aryl Iodides: Evidence of a Pd ^{II} â€"Pd ^{IV} â€"Pd ^{II} Pathway. Organometallics, 2016, 35, 875-886.	1.1	29
36	Metal-free regioselective C-3 acetoxylation of N-substituted indoles: crucial impact of nitrogen-substituent. RSC Advances, 2015, 5, 57472-57481.	1.7	20

#	Article	IF	CITATIONS
37	Mono- and binuclear palladacycles via regioselective C–H bond activation: syntheses, mechanistic insights and catalytic activity in direct arylation of azoles. RSC Advances, 2015, 5, 81502-81514.	1.7	15
38	Design and development of POCN-pincer palladium catalysts for Câ€"H bond arylation of azoles with aryl iodides. Dalton Transactions, 2014, 43, 16084-16096.	1.6	51
39	Cobaltâ€Catalyzed CH Bond Functionalizations with Aryl and Alkyl Chlorides. Chemistry - A European Journal, 2013, 19, 10605-10610.	1.7	167
40	Rational Design of Highly Active "Hybrid―Phosphine–Phosphinite Pincer Iridium Catalysts for Alkane Metathesis. ACS Catalysis, 2013, 3, 2505-2514.	5 . 5	55
41	Recent advances in transition-metal-free direct C–C and C–heteroatom bond forming reactions. RSC Advances, 2013, 3, 11957.	1.7	155
42	Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes. Nature Chemistry, 2011, 3, 167-171.	6.6	177
43	Userâ€Friendly [(Diglyme)NiBr ₂]â€Catalyzed Direct Alkylations of Heteroarenes with Unactivated Alkyl Halides through CïŁ¿H Bond Cleavages. Advanced Synthesis and Catalysis, 2011, 353, 3325-3329.	2.1	72
44	A Highly Stable Adamantyl-Substituted Pincer-Ligated Iridium Catalyst for Alkane Dehydrogenation. Organometallics, 2010, 29, 2702-2709.	1,1	98
45	Copper(I) complexes of a thioether-functionalized short-bite aminobis(phosphonite), [PhN{P(–OC10H6(μ-S)C10H6O–)}2]. Polyhedron, 2009, 28, 101-106.	1.0	7
46	Thioether-Functionalized Ferrocenyl-bis(phosphonite), Fe{(C5H4)P(â^'OC10H6(μ-S)C10H6Oâ^')}2:  Synthe Coordination Behavior, and Application in Suzuki-Miyaura Cross-Coupling Reactions. Inorganic Chemistry, 2007, 46, 10268-10275.	sis, 1.9	43
47	Highly Air-Stable Anionic Mononuclear and Neutral Binuclear Palladium(II) Complexes for Câ^'C and Câ^'N Bond-Forming Reactions. Inorganic Chemistry, 2007, 46, 11316-11327.	1.9	47
48	Group 11 Metal Complexes of the Mesocyclic Thioether Aminophosphonites [-OC10H6(\hat{l}^1 /4-S)C10H6O-]PNC4H8E (E = O, NMe). European Journal of Inorganic Chemistry, 2007, 2007, 720-731.	1.0	13
49	Large bite bisphosphite, 2,6-C5H3N{CH2OP(–OC10H6)(μ-S)(C10H6O–)}2: Synthesis, derivatization, transition metal chemistry and application towards hydrogenation of olefins. Journal of Organometallic Chemistry, 2007, 692, 1683-1689.	0.8	7
50	O-2-Naphthyl diphenylthiophosphinate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4644-o4644.	0.2	1
51	O-2-Naphthyl diphenylselenophosphinate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4645-o4645.	0.2	2
52	Synthesis of Neutral (PdII, PtII), Cationic (PdII), and Water-Induced Anionic (PdII) Complexes Containing New Mesocyclic Thioetherâ ² Aminophosphonite Ligands and Their Application in the Suzuki Cross-Coupling Reaction. Inorganic Chemistry, 2006, 45, 9454-9464.	1.9	53
53	Synthesis and reaction kinetics of Pd(1,5-cyclooctadiene)Cl2 with N,N \hat{a} \in 2-methylene-bis(2-aminopyridyl): An efficient catalyst for Suzuki-cross-coupling reactions. Polyhedron, 2006, 25, 815-820.	1.0	23
54	Suzuki cross-coupling reactions catalyzed by palladium complex of an inexpensive phosphinite, 2-diphenylphosphinoxynaphthyl. Journal of Molecular Catalysis A, 2006, 259, 78-83.	4.8	51

#	Article	IF	CITATIONS
55	Ruthenium(II), copper(I) and silver(I) complexes of large bite bisphosphinite, bis(2-diphenylphosphinoxynaphthalen-1-yl)methane: Application of Ru(II) complexes towards the hydrogenation of styrene and phenylacetylene. Journal of Organometallic Chemistry, 2006, 691, 4265-4272.	0.8	30
56	Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(II) catalyst. Catalysis Science and Technology, $0, \dots$	2.1	5
57	An Efficient Route to 3,3'â€Biindolinylideneâ€diones by Ironâ€Catalyzed Dimerization of Isatins. Chemistry - an Asian Journal, 0, , .	1.7	2