## Pramote Khuwijitjaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6825032/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF               | CITATIONS         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 1  | Effect of drying temperature together with light on drying characteristics and bioactive compounds in turmeric slice. Journal of Food Engineering, 2022, 317, 110695.                                                                                            | 2.7              | 9                 |
| 2  | Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot) Tj ETQq0 0 0 rgBT<br>131173.                                                                                                                                      | /Overlock<br>4.2 | 10 Tf 50 70<br>26 |
| 3  | Effect of ethanol concentration and temperature on solubility of fructose. Food Science and Technology Research, 2022, 28, 105-109.                                                                                                                              | 0.3              | 0                 |
| 4  | Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods, 2022, 11, 489.                                                                                                         | 1.9              | 6                 |
| 5  | Drying Behavior and Curcuminoids Changes in Turmeric Slices during Drying under Simulated Solar<br>Radiation as Influenced by Different Transparent Cover Materials. Foods, 2022, 11, 696.                                                                       | 1.9              | 4                 |
| 6  | Continuous Production of Maltulose from Maltose in a Pressurized Hot Phosphate Buffer. Japan<br>Journal of Food Engineering, 2022, 23, 63-69.                                                                                                                    | 0.1              | 2                 |
| 7  | Chemical composition and antioxidant activity of oil obtained from coconut meal by subcritical ethanol extraction. Journal of Food Measurement and Characterization, 2021, 15, 4128-4137.                                                                        | 1.6              | 5                 |
| 8  | Isomerization of maltose to maltulose in a pressurized hot phosphate buffer. Biocatalysis and Agricultural Biotechnology, 2021, 37, 102164.                                                                                                                      | 1.5              | 7                 |
| 9  | Influence of packaging materials, oxygen and storage temperature on quality of germinated parboiled<br>rice. LWT - Food Science and Technology, 2020, 121, 108926.                                                                                               | 2.5              | 8                 |
| 10 | Temporal changes in the spatial distribution of physicochemical properties during postharvest ripening of mango fruit. Journal of Food Measurement and Characterization, 2020, 14, 992-1001.                                                                     | 1.6              | 4                 |
| 11 | Effect of drying temperature and drying method on drying rate and bioactive compounds in<br>cassumunar ginger (Zingiber montanum). Journal of Applied Research on Medicinal and Aromatic<br>Plants, 2020, 18, 100262.                                            | 0.9              | 22                |
| 12 | Passion fruit. , 2020, , 183-201.                                                                                                                                                                                                                                |                  | 1                 |
| 13 | Physical and chemical properties, antioxidant capacity, and total phenolic content of xyloglucan<br>component in tamarind ( <i>Tamarindus indica</i> ) seed extracted using subcritical water. Journal of<br>Food Processing and Preservation, 2019, 43, e14146. | 0.9              | 17                |
| 14 | Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal<br>Hydrolysate. Food and Bioprocess Technology, 2019, 12, 1197-1204.                                                                                                  | 2.6              | 9                 |
| 15 | Emulsifying properties of conjugates formed between whey protein isolate and subcritical-water hydrolyzed pectin. Food Hydrocolloids, 2019, 91, 174-181.                                                                                                         | 5.6              | 21                |
| 16 | Influence of drying conditions on colour, betacyanin content and antioxidant capacities in dried redâ€fleshed dragon fruit ( <i>Hylocereus polyrhizus</i> ). International Journal of Food Science and Technology, 2019, 54, 460-470.                            | 1.3              | 20                |
| 17 | Near infrared spectroscopy research performance in food science and technology. NIR News, 2018, 29, 12-14.                                                                                                                                                       | 1.6              | 0                 |
| 18 | Properties of subcritical water-hydrolyzed passion fruit ( Passiflora edulis ) pectin. Food<br>Hydrocolloids, 2018, 74, 72-77.                                                                                                                                   | 5.6              | 24                |

Pramote Khuwijitjaru

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Extraction of Oligosaccharides from Passion Fruit Peel by Subcritical Water Treatment. Journal of<br>Food Process Engineering, 2017, 40, e12269.                                                          | 1.5 | 34        |
| 20 | Production of Lactulose from Lactose in Subcritical Aqueous Ethanol. Journal of Food Process Engineering, 2017, 40, e12413.                                                                               | 1.5 | 8         |
| 21 | Degradation kinetics of passion fruit pectin in subcritical water. Bioscience, Biotechnology and Biochemistry, 2017, 81, 712-717.                                                                         | 0.6 | 17        |
| 22 | Astaxanthin stability and color change of krill during subcritical water treatment. Journal of Food<br>Science and Technology, 2017, 54, 3065-3072.                                                       | 1.4 | 20        |
| 23 | Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosystems<br>Engineering, 2017, 159, 109-120.                                                                        | 1.9 | 58        |
| 24 | Effect of Ethanol Addition on Subcritical Water Extraction of Pectic Polysaccharides from Passion<br>Fruit Peel. Journal of Food Processing and Preservation, 2017, 41, e13138.                           | 0.9 | 17        |
| 25 | Kinetic Analysis of Lactulose Production from Lactose in Subcritical Aqueous Ethanol. Food Science and Technology Research, 2017, 23, 45-49.                                                              | 0.3 | 5         |
| 26 | Antioxidative Properties of Stearoyl Ascorbate in a Food Matrix System. Journal of Oleo Science, 2016,<br>65, 487-492.                                                                                    | 0.6 | 1         |
| 27 | Decomposition Kinetics of Glucose and Fructose in Subcritical Water Containing Sodium Chloride.<br>Journal of Applied Glycoscience (1999), 2016, 63, 99-104.                                              | 0.3 | 7         |
| 28 | Utilization of Plant-Based Agricultural Waste by Subcritical Water Treatment. Japan Journal of Food<br>Engineering, 2016, 17, 33-39.                                                                      | 0.1 | 13        |
| 29 | Using severity factor as a parameter to optimize krill treatment under subcritical water conditions.<br>Bioscience, Biotechnology and Biochemistry, 2016, 80, 2192-2197.                                  | 0.6 | 5         |
| 30 | Preparation of Liquid and Solid Seasonings with Shrimp-like Flavor from Isada Krill under Subcritical<br>Water Conditions by Steam Injection. Food Science and Technology Research, 2016, 22, 317-323.    | 0.3 | 5         |
| 31 | Kinetic analysis for the isomerization of cellobiose to cellobiulose in subcritical aqueous ethanol.<br>Carbohydrate Research, 2016, 433, 67-72.                                                          | 1.1 | 10        |
| 32 | Degradation kinetics of trisaccharides comprised of glucose residues in subcritical water. Journal of<br>Carbohydrate Chemistry, 2016, 35, 286-299.                                                       | 0.4 | 4         |
| 33 | Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water<br>and Meat at Different Maturity Stages. International Journal of Food Properties, 2016, 19, 2041-2051. | 1.3 | 62        |
| 34 | Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biology and Technology, 2016, 111, 31-40.                                               | 2.9 | 92        |
| 35 | Antioxidative Property of Acyl Ascorbate in Cookies Containing Iron. Japan Journal of Food<br>Engineering, 2016, 17, 77-81.                                                                               | 0.1 | 1         |
| 36 | Direct Treatment of Isada Krill under Subcritical Water Conditions to Produce Seasoning with Shrimp-Like Flavor. Food Technology and Biotechnology, 2016, 54, 335-341.                                    | 0.9 | 5         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Degradation of disaccharides containing two glucose units in subcritical water. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 681-686.                                                                     | 0.8 | 1         |
| 38 | Compositions, flavour and antiradical properties of products from subcritical water treatment of raw Isada krill. International Journal of Food Science and Technology, 2015, 50, 1632-1639.                         | 1.3 | 8         |
| 39 | Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. Journal of Food Composition and Analysis, 2015, 38, 32-41.                       | 1.9 | 43        |
| 40 | Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging<br>activity of their degradation products. Canadian Journal of Chemical Engineering, 2014, 92, 810-815.                  | 0.9 | 56        |
| 41 | Production of oligosaccharides from coconut meal by subcritical water treatment. International<br>Journal of Food Science and Technology, 2014, 49, 1946-1952.                                                       | 1.3 | 32        |
| 42 | Degradation of Caffeic Acid in Subcritical Water and Online HPLC-DPPH Assay of Degradation<br>Products. Journal of Agricultural and Food Chemistry, 2014, 62, 1945-1949.                                             | 2.4 | 29        |
| 43 | Subcritical Water Treatment for Producing Seasoning From Semidried Isada Krill. Journal of Food<br>Process Engineering, 2014, 37, 567-574.                                                                           | 1.5 | 8         |
| 44 | Properties of Extract from Okara by Its Subcritical Water Treatment. International Journal of Food<br>Properties, 2013, 16, 974-982.                                                                                 | 1.3 | 25        |
| 45 | Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark<br>( <i>Cinnamomum zeylanicum</i> ). Journal of Oleo Science, 2012, 61, 349-355.                                                 | 0.6 | 42        |
| 46 | Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 2012, 18, 225-229.                                                | 2.9 | 55        |
| 47 | Antioxidant Characteristics of Extracts from Cereal Residues by Their Subcritical Water Treatment.<br>Journal of Oleo Science, 2012, 61, 465-468.                                                                    | 0.6 | 1         |
| 48 | Effects of ferric chloride on thermal degradation of γâ€oryzanol and oxidation of rice bran oil.<br>European Journal of Lipid Science and Technology, 2011, 113, 652-657.                                            | 1.0 | 7         |
| 49 | Emulsifying and Foaming Properties of Defatted Soy Meal Extracts Obtained by Subcritical Water Treatment. International Journal of Food Properties, 2011, 14, 9-16.                                                  | 1.3 | 15        |
| 50 | Degradation Kinetics of Gamma-Oryzanol in Antioxidant-Stripped Rice Bran Oil during Thermal<br>Oxidation. Journal of Oleo Science, 2009, 58, 491-497.                                                                | 0.6 | 24        |
| 51 | Phenolic Content and Radical Scavenging Capacity of Kaffir Lime Fruit Peel Extracts Obtained by Pressurized Hot Water Extraction. Food Science and Technology Research, 2008, 14, 1-4.                               | 0.3 | 16        |
| 52 | Production Optimization of the Extract with High Phenolic Content and Radical Scavenging Activity<br>from Defatted Rice Bran by Subcritical Water Treatment. Japan Journal of Food Engineering, 2007, 8,<br>311-315. | 0.1 | 10        |
| 53 | Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chemistry, 2006, 94, 341-347.                                                  | 4.2 | 42        |
| 54 | Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water. Journal of Colloid and Interface Science, 2004, 278, 192-197.                                                         | 5.0 | 9         |

| #  | Article                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Kinetics on the hydrolysis of fatty acid esters in subcritical water. Chemical Engineering Journal, 2004, 99, 1-4.                      | 6.6 | 63        |
| 56 | Solubility of Oleic and Linoleic Acids in Subcritical Water. Food Science and Technology Research, 2004, 10, 261-263.                   | 0.3 | 19        |
| 57 | Solubility of Saturated Fatty Acids in Water at Elevated Temperatures. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1723-1726. | 0.6 | 102       |