Pramote Khuwijitjaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6825032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solubility of Saturated Fatty Acids in Water at Elevated Temperatures. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1723-1726.	0.6	102
2	Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biology and Technology, 2016, 111, 31-40.	2.9	92
3	Kinetics on the hydrolysis of fatty acid esters in subcritical water. Chemical Engineering Journal, 2004, 99, 1-4.	6.6	63
4	Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water and Meat at Different Maturity Stages. International Journal of Food Properties, 2016, 19, 2041-2051.	1.3	62
5	Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosystems Engineering, 2017, 159, 109-120.	1.9	58
6	Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging activity of their degradation products. Canadian Journal of Chemical Engineering, 2014, 92, 810-815.	0.9	56
7	Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 2012, 18, 225-229.	2.9	55
8	Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. Journal of Food Composition and Analysis, 2015, 38, 32-41.	1.9	43
9	Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chemistry, 2006, 94, 341-347.	4.2	42
10	Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (<i>Cinnamomum zeylanicum</i>). Journal of Oleo Science, 2012, 61, 349-355.	0.6	42
11	Extraction of Oligosaccharides from Passion Fruit Peel by Subcritical Water Treatment. Journal of Food Process Engineering, 2017, 40, e12269.	1.5	34
12	Production of oligosaccharides from coconut meal by subcritical water treatment. International Journal of Food Science and Technology, 2014, 49, 1946-1952.	1.3	32
13	Degradation of Caffeic Acid in Subcritical Water and Online HPLC-DPPH Assay of Degradation Products. Journal of Agricultural and Food Chemistry, 2014, 62, 1945-1949.	2.4	29
14	Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot) Tj ETQq0 0 0 rgB 131173.	T /Overloc 4.2	k 10 Tf 50 22 26
15	Properties of Extract from Okara by Its Subcritical Water Treatment. International Journal of Food Properties, 2013, 16, 974-982.	1.3	25
16	Degradation Kinetics of Gamma-Oryzanol in Antioxidant-Stripped Rice Bran Oil during Thermal Oxidation. Journal of Oleo Science, 2009, 58, 491-497.	0.6	24
17	Properties of subcritical water-hydrolyzed passion fruit (Passiflora edulis) pectin. Food Hydrocolloids, 2018, 74, 72-77.	5.6	24
18	Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum). Journal of Applied Research on Medicinal and Aromatic Plants, 2020, 18, 100262.	0.9	22

Pramote Khuwijitjaru

#	Article	IF	CITATIONS
19	Emulsifying properties of conjugates formed between whey protein isolate and subcritical-water hydrolyzed pectin. Food Hydrocolloids, 2019, 91, 174-181.	5.6	21
20	Astaxanthin stability and color change of krill during subcritical water treatment. Journal of Food Science and Technology, 2017, 54, 3065-3072.	1.4	20
21	Influence of drying conditions on colour, betacyanin content and antioxidant capacities in dried redâ€fleshed dragon fruit (<i>Hylocereus polyrhizus</i>). International Journal of Food Science and Technology, 2019, 54, 460-470.	1.3	20
22	Solubility of Oleic and Linoleic Acids in Subcritical Water. Food Science and Technology Research, 2004, 10, 261-263.	0.3	19
23	Degradation kinetics of passion fruit pectin in subcritical water. Bioscience, Biotechnology and Biochemistry, 2017, 81, 712-717.	0.6	17
24	Effect of Ethanol Addition on Subcritical Water Extraction of Pectic Polysaccharides from Passion Fruit Peel. Journal of Food Processing and Preservation, 2017, 41, e13138.	0.9	17
25	Physical and chemical properties, antioxidant capacity, and total phenolic content of xyloglucan component in tamarind (<i>Tamarindus indica</i>) seed extracted using subcritical water. Journal of Food Processing and Preservation, 2019, 43, e14146.	0.9	17
26	Phenolic Content and Radical Scavenging Capacity of Kaffir Lime Fruit Peel Extracts Obtained by Pressurized Hot Water Extraction. Food Science and Technology Research, 2008, 14, 1-4.	0.3	16
27	Emulsifying and Foaming Properties of Defatted Soy Meal Extracts Obtained by Subcritical Water Treatment. International Journal of Food Properties, 2011, 14, 9-16.	1.3	15
28	Utilization of Plant-Based Agricultural Waste by Subcritical Water Treatment. Japan Journal of Food Engineering, 2016, 17, 33-39.	0.1	13
29	Production Optimization of the Extract with High Phenolic Content and Radical Scavenging Activity from Defatted Rice Bran by Subcritical Water Treatment. Japan Journal of Food Engineering, 2007, 8, 311-315.	0.1	10
30	Kinetic analysis for the isomerization of cellobiose to cellobiulose in subcritical aqueous ethanol. Carbohydrate Research, 2016, 433, 67-72.	1.1	10
31	Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water. Journal of Colloid and Interface Science, 2004, 278, 192-197.	5.0	9
32	Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate. Food and Bioprocess Technology, 2019, 12, 1197-1204.	2.6	9
33	Effect of drying temperature together with light on drying characteristics and bioactive compounds in turmeric slice. Journal of Food Engineering, 2022, 317, 110695.	2.7	9
34	Subcritical Water Treatment for Producing Seasoning From Semidried Isada Krill. Journal of Food Process Engineering, 2014, 37, 567-574.	1.5	8
35	Compositions, flavour and antiradical properties of products from subcritical water treatment of raw Isada krill. International Journal of Food Science and Technology, 2015, 50, 1632-1639.	1.3	8
36	Production of Lactulose from Lactose in Subcritical Aqueous Ethanol. Journal of Food Process Engineering, 2017, 40, e12413.	1.5	8

Pramote Khuwijitjaru

#	Article	IF	CITATIONS
37	Influence of packaging materials, oxygen and storage temperature on quality of germinated parboiled rice. LWT - Food Science and Technology, 2020, 121, 108926.	2.5	8
38	Effects of ferric chloride on thermal degradation of γâ€oryzanol and oxidation of rice bran oil. European Journal of Lipid Science and Technology, 2011, 113, 652-657.	1.0	7
39	Decomposition Kinetics of Glucose and Fructose in Subcritical Water Containing Sodium Chloride. Journal of Applied Glycoscience (1999), 2016, 63, 99-104.	0.3	7
40	lsomerization of maltose to maltulose in a pressurized hot phosphate buffer. Biocatalysis and Agricultural Biotechnology, 2021, 37, 102164.	1.5	7
41	Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods, 2022, 11, 489.	1.9	6
42	Using severity factor as a parameter to optimize krill treatment under subcritical water conditions. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2192-2197.	0.6	5
43	Preparation of Liquid and Solid Seasonings with Shrimp-like Flavor from Isada Krill under Subcritical Water Conditions by Steam Injection. Food Science and Technology Research, 2016, 22, 317-323.	0.3	5
44	Kinetic Analysis of Lactulose Production from Lactose in Subcritical Aqueous Ethanol. Food Science and Technology Research, 2017, 23, 45-49.	0.3	5
45	Chemical composition and antioxidant activity of oil obtained from coconut meal by subcritical ethanol extraction. Journal of Food Measurement and Characterization, 2021, 15, 4128-4137.	1.6	5
46	Direct Treatment of Isada Krill under Subcritical Water Conditions to Produce Seasoning with Shrimp-Like Flavor. Food Technology and Biotechnology, 2016, 54, 335-341.	0.9	5
47	Degradation kinetics of trisaccharides comprised of glucose residues in subcritical water. Journal of Carbohydrate Chemistry, 2016, 35, 286-299.	0.4	4
48	Temporal changes in the spatial distribution of physicochemical properties during postharvest ripening of mango fruit. Journal of Food Measurement and Characterization, 2020, 14, 992-1001.	1.6	4
49	Drying Behavior and Curcuminoids Changes in Turmeric Slices during Drying under Simulated Solar Radiation as Influenced by Different Transparent Cover Materials. Foods, 2022, 11, 696.	1.9	4
50	Continuous Production of Maltulose from Maltose in a Pressurized Hot Phosphate Buffer. Japan Journal of Food Engineering, 2022, 23, 63-69.	0.1	2
51	Degradation of disaccharides containing two glucose units in subcritical water. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 681-686.	0.8	1
52	Antioxidative Properties of Stearoyl Ascorbate in a Food Matrix System. Journal of Oleo Science, 2016, 65, 487-492.	0.6	1
53	Antioxidative Property of Acyl Ascorbate in Cookies Containing Iron. Japan Journal of Food Engineering, 2016, 17, 77-81.	0.1	1
54	Antioxidant Characteristics of Extracts from Cereal Residues by Their Subcritical Water Treatment. Journal of Oleo Science, 2012, 61, 465-468.	0.6	1

#	Article	IF	CITATIONS
55	Passion fruit. , 2020, , 183-201.		1
56	Near infrared spectroscopy research performance in food science and technology. NIR News, 2018, 29, 12-14.	1.6	0
57	Effect of ethanol concentration and temperature on solubility of fructose. Food Science and Technology Research, 2022, 28, 105-109.	0.3	0