Alessia Cedola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	3.1	1
2	High-Sensitivity X-ray Phase Imaging System Based on a Hartmann Wavefront Sensor. Condensed Matter, 2022, 7, 3.	1.8	2
3	A computational platform for the virtual unfolding of Herculaneum Papyri. Scientific Reports, 2021, 11, 1695.	3.3	7
4	3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography. Frontiers in Oncology, 2021, 11, 554668.	2.8	5
5	Chemo-physical properties of asbestos bodies in human lung tissues studied at the nano-scale by non-invasive, label free x-ray imaging and spectroscopic techniques. Toxicology Letters, 2021, 348, 18-27.	0.8	6
6	Asbestos bodies count and morphometry in bulk lung tissue samples by non-invasive X-ray micro-tomography. Scientific Reports, 2021, 11, 10608.	3.3	2
7	Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Frontiers in Immunology, 2021, 12, 655212.	4.8	10
8	Xâ€ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 2021, 46, 672-684.	3.9	27
9	Phase-Contrast Tomography with X-ray Hartmann wavefront sensor. , 2021, , .		1
10	Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites, 2021, 11, 517.	2.9	6
11	Steerable3D: An ImageJ plugin for neurovascular enhancement in 3-D segmentation. Physica Medica, 2021, 81, 197-209.	0.7	5
12	Numerical simulation of the blood oxygenation level–dependent functional magnetic resonance signal using finite element method. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3290.	2.1	1
13	Assessment of plaque morphology in Alzheimer's mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Scientific Reports, 2020, 10, 11233.	3.3	19
14	Modelling of Phase Contrast Imaging with X-ray Wavefront Sensor and Partial Coherence Beams. Sensors, 2020, 20, 6469.	3.8	4
15	X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 584161.	2.8	12
16	Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography. Journal of Structural Biology, 2020, 212, 107659.	2.8	5
17	Multiscale Imaging Approach for Studying the Central Nervous System: Methodology and Perspective. Frontiers in Neuroscience, 2020, 14, 72.	2.8	7
18	X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis. Journal of Synchrotron Radiation, 2020, 27, 1042-1048.	2.4	11

Alessia Cedola

#	Article	IF	CITATIONS
19	Multiscale pink-beam microCT imaging at the ESRF-ID17 biomedical beamline. Journal of Synchrotron Radiation, 2020, 27, 1347-1357.	2.4	21
20	Simultaneous iterative reconstruction method for high resolution x-ray phase-contrast tomography. , 2020, , .		1
21	Orthotropic artifacts suppression for THz and x-ray images using guided filtering. , 2020, , .		2
22	High resolution 3D visualization of the spinal cord in a post-mortem murine model. Biomedical Optics Express, 2020, 11, 2235.	2.9	5
23	Ancient Greek text concealed on the back of unrolled papyrus revealed through shortwave-infrared hyperspectral imaging. Science Advances, 2019, 5, eaav8936.	10.3	18
24	Synchrotron radiation techniques boost the research in bone tissue engineering. Acta Biomaterialia, 2019, 89, 33-46.	8.3	23
25	Investigation of Herculaneum Papyri by X-Ray Phase-Contrast Tomography. , 2019, , 299-324.		Ο
26	Exploring Alzheimer's disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. NeuroImage, 2019, 184, 490-495.	4.2	56
27	Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions. Journal of Instrumentation, 2018, 13, C02028-C02028.	1.2	6
28	3D map of theranostic nanoparticles distribution in mice brain and liver by means of X-ray Phase Contrast Tomography. Journal of Instrumentation, 2018, 13, C01049-C01049.	1.2	2
29	An improved ring removal procedure for in-line x-ray phase contrast tomography. Physics in Medicine and Biology, 2018, 63, 045007.	3.0	14
30	Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord. Journal of Instrumentation, 2018, 13, C03027-C03027.	1.2	7
31	Fractal Dimension Analysis of High-Resolution X-Ray Phase Contrast Micro-Tomography Images at Different Threshold Levels in a Mouse Spinal Cord. Condensed Matter, 2018, 3, 48.	1.8	9
32	3D imaging of theranostic nanoparticles in mice organs by means of x-ray phase contrast tomography. , 2018, , .		0
33	Quantitative 3D investigation of Neuronal network in mouse spinal cord model. Scientific Reports, 2017, 7, 41054.	3.3	40
34	New insights on the biomineralisation process developing in human lungs around inhaled asbestos fibres. Scientific Reports, 2017, 7, 44862.	3.3	17
35	SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows. Advanced Structural and Chemical Imaging, 2017, 3, 4.	4.0	111
36	Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles. Nanoscale, 2017, 9, 17274-17283.	5.6	31

#	Article	IF	CITATIONS
37	X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Scientific Reports, 2017, 7, 5890.	3.3	64
38	Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography. Scientific Reports, 2016, 6, 27227.	3.3	27
39	Characterization of mouse spinal cord vascular network by means of synchrotron radiation X-ray phase contrast tomography. Physica Medica, 2016, 32, 1779-1784.	0.7	15
40	Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. Bioinspiration and Biomimetics, 2016, 11, 011001.	2.9	44
41	High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue. Frontiers in Bioengineering and Biotechnology, 2015, 3, 133.	4.1	10
42	Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Scientific Reports, 2015, 5, 8514.	3.3	73
43	Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomaterialia, 2015, 23, 309-316.	8.3	30
44	X-ray micro-beam techniques and phase contrast tomography applied to biomaterials. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 93-97.	1.4	3
45	Magnesium intracellular content and distribution map in drug-resistant and -sensitive whole cells. Journal of Biological Research (Italy), 2014, 87, .	0.1	0
46	Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Physics in Medicine and Biology, 2014, 59, 189-201.	3.0	27
47	Wet sample confinement by superhydrophobic patterned surfaces for combined X-ray fluorescence and X-ray phase contrast imaging. Microelectronic Engineering, 2013, 111, 304-309.	2.4	17
48	X-RAY WAVEGUIDES. Series on Synchrotron Radiation Techniques and Applications, 2013, , 143-162.	0.2	0
49	A three-image algorithm for hard x-ray grating interferometry. Optics Express, 2013, 21, 19401.	3.4	21
50	Periodically structured X-ray waveguides. Journal of Synchrotron Radiation, 2013, 20, 691-697.	2.4	2
51	Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements. Applied Physics Letters, 2013, 103, 253703.	3.3	12
52	Recent developments on techniques for differential phase imaging at the medical beamline of ELETTRA. Journal of Instrumentation, 2013, 8, C06001-C06001.	1.2	3
53	X-ray fluorescence microscopy of light elements in cells: self-absorption correction by integration of compositional and morphological measurements. Journal of Physics: Conference Series, 2013, 463, 012022.	0.4	12
54	Iterative retrieval of one-dimensional x ray wave field using a single intensity measurement. Optics Letters, 2012, 37, 262.	3.3	2

#	Article	IF	CITATIONS
55	Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction. Acta Biomaterialia, 2012, 8, 3411-3418.	8.3	36
56	Resonance modes filtering in structured x-ray waveguides. Optics Letters, 2011, 36, 2602.	3.3	5
57	Combined X-ray Microfluorescence and Atomic Force Microscopy Studies of Mg Distribution in Whole Cells. , 2011, , .		Ο
58	Intracellular concentration map of magnesium in whole cells by combined use of X-ray fluorescence microscopy and atomic force microscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 834-840.	2.9	20
59	Visible emitting color centers in lithium fluoride for X-ray imaging applications. Radiation Measurements, 2010, 45, 599-601.	1.4	3
60	Debye function analysis and 2D imaging of nanoscaled engineered bone. Biomaterials, 2010, 31, 8289-8298.	11.4	23
61	Analysis of tapered front-coupling X-ray waveguides. Journal of Synchrotron Radiation, 2010, 17, 61-68.	2.4	17
62	F and F-aggregates colour centres in lithium fluoride for high spatial resolution x-ray imaging. Journal of Physics: Conference Series, 2010, 249, 012003.	0.4	2
63	X-ray phase contrast microscopy at 300 nm resolution with laboratory sources. Optics Express, 2010, 18, 15998.	3.4	16
64	Toward the X-Ray Microdiffraction Imaging of Bone and Tissue-Engineered Bone. Tissue Engineering - Part B: Reviews, 2009, 15, 423-442.	4.8	14
65	Some applications of nanotechnologies in stem cells research. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 139-147.	3.5	10
66	Theoretical considerations for X-ray phase contrast mammography by Thomson source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608, S23-S27.	1.6	5
67	Advancements in X-ray waveguides and their applications in coherent diffraction imaging. Radiation Physics and Chemistry, 2009, 78, S42-S45.	2.8	2
68	In-line phase-contrast imaging for strong absorbing objects. Physics in Medicine and Biology, 2008, 53, 6619-6637.	3.0	15
69	In-line holography and coherent diffractive imaging with x-ray waveguides. Physical Review B, 2008, 77,	3.2	32
70	Theoretical Analysis of X-Ray Waveguides. , 2008, , 91-111.		1
71	Phase retrieval in x-ray coherent Fresnel projection-geometry diffraction. Applied Physics Letters, 2007, 90, 041105.	3.3	6
72	Computer simulations and experimental results on air-gap X-ray waveguides. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 615-621.	2.9	19

#	Article	IF	CITATIONS
73	Canonical correlation and quantitative phase analysis of microdiffraction patterns in bone-tissue engineering. Journal of Applied Crystallography, 2007, 40, 865-873.	4.5	8
74	Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: Evidence for a coupling between bone formation and scaffold resorption. Biomaterials, 2007, 28, 1376-1384.	11.4	126
75	Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials, 2007, 28, 2505-2524.	11.4	110
76	Orientation of mineral crystals by collagen fibers during in vivo bone engineering: An X-ray diffraction imaging study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 642-647.	2.9	25
77	Wave-Field Formation in a Hollow X-Ray Waveguide. Physical Review Letters, 2006, 97, 184801.	7.8	35
78	Kinetics ofIn VivoBone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds: An X-Ray Computed Microtomography Study. Tissue Engineering, 2006, 12, 3449-3458.	4.6	63
79	Dispersion properties of x-ray waveguides. Applied Optics, 2006, 45, 2821.	2.1	4
80	Large-distance refocusing of a submicrometre beam from an X-ray waveguide. Journal of Synchrotron Radiation, 2006, 13, 85-87.	2.4	1
81	X-ray point- and line-projection microscopy and diffraction. Optics Communications, 2006, 265, 18-28.	2.1	4
82	Engineered bone from bone marrow stromal cells: a structural study by an advanced x-ray microdiffraction technique. Physics in Medicine and Biology, 2006, 51, N109-N116.	3.0	28
83	Hard x-ray contact microscopy with 250nm spatial resolution using a LiF film detector and a tabletop microsource. Applied Physics Letters, 2006, 89, 054102.	3.3	41
84	<title>Design and simulation of nested x-ray mirrors</title> ., 2005, , .		1
85	<title>Ten years of x-ray waveguides: past, present and future</title> . , 2005, , .		0
86	X-ray waveguides for laboratory sources. Journal Physics D: Applied Physics, 2005, 38, A213-A217.	2.8	8
87	X-ray characterization of Si microstructures with high spatial resolution. Journal of Applied Physics, 2004, 95, 1662-1666.	2.5	2
88	An automatic analysis of strain-depth profile in X-ray microdiffraction. Physica B: Condensed Matter, 2004, 353, 104-110.	2.7	2
89	High spatial resolution X-ray microdiffraction applied to biomaterial studies and archeometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1557-1564.	2.9	12
90	Synchrotron Radiation Microtomography of Bone Engineered from Bone Marrow Stromal Cells. Tissue Engineering, 2004, 10, 1767-1774.	4.6	36

#	Article	IF	CITATIONS
91	From Surface Xâ€ray Standing Waves to Waveguides: Principles and Applications. Synchrotron Radiation News, 2004, 17, 30-36.	0.8	6
92	Spatial coherence of X-ray planar waveguide exiting radiation. Optics Communications, 2003, 217, 31-45.	2.1	16
93	Techniques for mechanical strain analysis in sub-micrometer structures: TEM/CBED, micro-Raman spectroscopy, X-ray micro-diffraction and modeling. Microelectronic Engineering, 2003, 70, 425-435.	2.4	44
94	X-ray micro-diffraction analysis of reconstructed bone at Zr prosthetic surface with sub-micrometre spatial resolution. Physics in Medicine and Biology, 2003, 48, N37-N48.	3.0	8
95	X-ray micro-diffraction analysis of reconstructed bone at Zr prosthetic surface with sub-micrometer spatial resolution. European Physical Journal Special Topics, 2003, 104, 329-332.	0.2	2
96	Advances in Microdiffraction with X-Ray Waveguide. Crystal Research and Technology, 2002, 37, 758.	1.3	14
97	X-ray waveguide as a new tool for 100 nm spatially resolved x-ray strain analysis. Journal Physics D: Applied Physics, 2001, 34, A40-A43.	2.8	25
98	High gain beam compression in new-generation thin-film x-ray waveguides. Applied Physics Letters, 2001, 78, 1192-1194.	3.3	84
99	Microcrystallography with an X-ray waveguide. Journal of Applied Crystallography, 2000, 33, 1231-1240.	4.5	68
100	Non-destructive determination of local strain with 100-nanometre spatial resolution. Nature, 2000, 403, 638-640.	27.8	145
101	X-ray nano-diffraction: 100 nm resolution obtained in a novel imaging technique for strain measurement at buried interfaces. Microelectronic Engineering, 2000, 53, 645-648.	2.4	26
102	Sub-micrometre coherent beams from x-ray waveguides: principles and applications. Journal Physics D: Applied Physics, 1999, 32, A179-A183.	2.8	10
103	The application of resonantly enhanced X-ray standing waves in fluorescence and waveguide experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1487-1495.	2.9	3
104	Thin film X-ray waveguides: â€~Condenser systems' for experiments with X-ray beams of 0.1 μm dimension. Journal of Alloys and Compounds, 1999, 286, 9-13.	5.5	5
105	Application of resonance-enhanced X-ray standing waves to the study of layered structures by grazing-incidence X-ray reflectometry and secondary radiation. Journal of Alloys and Compounds, 1999, 286, 313-321.	5.5	1
106	Submicrometre Beams from a Hard X-ray Waveguide at a Third-Generation Synchrotron Radiation Source. Journal of Synchrotron Radiation, 1998, 5, 17-22.	2.4	8
107	Submicrometre resolution phase-contrast radiography with the beam from an X-ray waveguide. Journal of Synchrotron Radiation, 1998, 5, 376-378.	2.4	50
108	Phase contrast hard x-ray microscopy with submicron resolution. Applied Physics Letters, 1997, 71, 2557-2559.	3.3	113

Alessia Cedola

#	Article	IF	CITATIONS
109	<title>High-resolution phase contrast microscopy with a hard x-ray waveguide</title> . , 1997, , .		0
110	Microdiffraction Experiments on Single Polymeric Fibers by Synchrotron Radiation. Macromolecules, 1997, 30, 1033-1037.	4.8	86
111	X-ray standing wave study of Si/Ge superlattices. Applied Surface Science, 1996, 102, 62-66.	6.1	3
112	Electromagnetic field resonance in thin amorphous films: a tool for non-destructive localization of thin marker layers by use of a standard X-ray tube. Thin Solid Films, 1996, 287, 288-292.	1.8	14
113	Submicrometer x-ray beam production by a thin film waveguide. Journal of Applied Physics, 1996, 79, 4471.	2.5	79
114	Properties of a submicrometer xâ€ray beam at the exit of a waveguide. Journal of Applied Physics, 1996, 80, 4831-4836.	2.5	90