Ludovic Rapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824583/publications.pdf Version: 2024-02-01

LUDOVIC PADD

#	Article	IF	CITATIONS
1	Ultrashort pulse laser ablation of steel in ambient air. Optics and Laser Technology, 2022, 148, 107757.	2.2	13
2	Formation of nanochannels in sapphire with ultrashort Bessel pulses. Optics Express, 2022, 30, 6016.	1.7	1
3	Ultrashort pulsed laser ablation of granite for stone conservation. Optics and Laser Technology, 2022, 151, 108057.	2.2	12
4	Hearts and Homes: The Potential of Conservation Laser Cleaning for Post-disaster Wellbeing and Waste Reduction. Studies in Conservation, 2022, 67, 309-318.	0.6	1
5	High-Pressure Silicon Phase Created by High Power Ultrashort Laser Pulse at the Intensity of 1019 W/cm2. , 2020, , .		Ο
6	High speed cleaving of crystals with ultrafast Bessel beams. Optics Express, 2017, 25, 9312.	1.7	52
7	Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams. Optics Letters, 2017, 42, 4307.	1.7	71
8	Polyvinylphenol (PVP) microcapacitors printed by laser-induced forward transfer (LIFT): multilayered pixel design and thermal analysis investigations. Journal Physics D: Applied Physics, 2016, 49, 155301.	1.3	8
9	Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases. MRS Advances, 2016, 1, 1149-1155.	0.5	7
10	Investigations on laser printing of microcapacitors using poly (methyl methacrylate) dielectric thin films for organic electronics applications. Applied Surface Science, 2016, 374, 90-95.	3.1	10
11	Ultrafast laser-induced micro-explosion: material modification tool. , 2016, , .		Ο
12	Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Optics Letters, 2015, 40, 5711.	1.7	27
13	Microcapacitors with controlled electrical capacity in the pF–nF range printed by laser-induced forward transfer (LIFT). Organic Electronics, 2015, 20, 1-7.	1.4	9
14	Pulsed laser processing of poly(3,3‴-didodecyl quarter thiophene) semiconductor for organic thin film transistors. Chemical Physics, 2015, 450-451, 32-38.	0.9	13
15	Functional multilayered capacitor pixels printed by picosecond laser-induced forward transfer using a smart beam shaping technique. Sensors and Actuators A: Physical, 2015, 224, 111-118.	2.0	16
16	Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nature Communications, 2015, 6, 7555.	5.8	122
17	Laser-induced forward transfer of multi-layered structures for OTFT applications. Applied Surface Science, 2015, 336, 11-15.	3.1	24
18	High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics. Optics Express, 2014, 22, 17122.	1.7	37

LUDOVIC RAPP

#	Article	IF	CITATIONS
19	Laser-induced forward transfer of polythiophene-based derivatives for fully polymeric thin film transistors. Organic Electronics, 2014, 15, 1868-1875.	1.4	30
20	Smart beam shaping for the deposition of solid polymeric material by laser forward transfer. Applied Physics A: Materials Science and Processing, 2014, 117, 333-339.	1.1	30
21	Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface. Applied Physics A: Materials Science and Processing, 2014, 114, 33-43.	1.1	12
22	Experimental observation for new polymorphs of silicon formed through ultrafast-laser-induced microexplosion. , 2014, , .		0
23	Ultrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases. Springer Series in Materials Science, 2014, , 3-26.	0.4	3
24	Multi-jets formation using laser forward transfer. Applied Surface Science, 2014, 302, 153-158.	3.1	30
25	High-Speed Laser Printing of Silver Nanoparticles Ink. Journal of Laser Micro Nanoengineering, 2014, 9, 5-9.	0.4	24
26	Applications of laser printing for organic electronics. Proceedings of SPIE, 2013, , .	0.8	17
27	Generation of high energy density by fs-laser-induced confined microexplosion. New Journal of Physics, 2013, 15, 025018.	1.2	33
28	Selective localised modifications of silicon crystal by ultrafast laser induced micro-explosion. Proceedings of SPIE, 2013, , .	0.8	0
29	Evidence of New High-Pressure Silicon Phases in Fs-Laser Induced Confined Microexplosion. , 2013, , .		Ο
30	Laser direct-printing for inter-connectivity and manufacturing of organic electronic components. AlP Conference Proceedings, 2012, , .	0.3	2
31	Laser printing of air-stable high performing organic thin film transistors. Organic Electronics, 2012, 13, 2035-2041.	1.4	28
32	Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: Impact of a protecting triazene layer. Thin Solid Films, 2012, 520, 3043-3047.	0.8	32
33	Pulsed-laser printing of silver nanoparticles ink: control of morphological properties. Optics Express, 2011, 19, 21563.	1.7	85
34	Top gate copper phthalocyanine thin film transistors with laser-printed dielectric. Synthetic Metals, 2011, 161, 888-893.	2.1	8
35	Multilayer laser printing for Organic Thin Film Transistors. Applied Surface Science, 2011, 257, 5152-5155.	3.1	17
36	Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication. Applied Surface Science, 2011, 257, 5245-5249	3.1	19

LUDOVIC RAPP

#	Article	IF	CITATIONS
37	Pulsed-Laser Printing Process for Organic Thin Film Transistors Fabrication. , 2010, , .		2
38	Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes. Applied Surface Science, 2009, 255, 5439-5443.	3.1	35
39	Pulsed-laser printing of organic thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	86
40	Study on the transfer induced by laser of organic conducting thin films. , 2009, , .		0
41	Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials. , 2008, , .		2
42	Dissipative solitons for real world optical solitons. , 2007, , .		1