Xin-Yi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824575/publications.pdf

Version: 2024-02-01

147801 114465 4,120 74 31 63 h-index citations g-index papers 75 75 75 3220 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chemical Communications, 2008, , 281-294.	4.1	486
2	Molecular magnetic materials based on 4d and 5d transition metals. Chemical Society Reviews, 2011, 40, 3213.	38.1	371
3	Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials. Inorganic Chemistry, 2004, 43, 4615-4625.	4.0	332
4	Solvent-Tuned Azido-Bridged Co2+Layers: Square, Honeycomb, andKagomé. Journal of the American Chemical Society, 2006, 128, 674-675.	13.7	280
5	FormateThe Analogue of Azide: Structural and Magnetic Properties of M(HCOO)2(4,4â€~-bpy)·nH2O (M =) Tj	ет <u>р</u> д1 1 ().784314 rg <mark>E</mark> 160
6	Field-Induced Slow Magnetic Relaxation in Cobalt(II) Compounds with Pentagonal Bipyramid Geometry. Inorganic Chemistry, 2014, 53, 12671-12673.	4.0	151
7	A Single-Molecule Magnet Based on Heptacyanomolybdate with the Highest Energy Barrier for a Cyanide Compound. Journal of the American Chemical Society, 2013, 135, 13302-13305.	13.7	136
8	A pillared layer MOF with anion-tunable magnetic properties and photochemical $[2+2]$ cycloaddition. Chemical Communications, 2007, , 1127.	4.1	133
9	Extended Networks of Co2+ and Mn2+ Bridged by NCS-/N3- Anions and Flexible Long Spacers: Syntheses, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2005, 2005, 3277-3286.	2.0	125
10	Probing the Effect of Axial Ligands on Easy-Plane Anisotropy of Pentagonal-Bipyramidal Cobalt(II) Single-lon Magnets. Inorganic Chemistry, 2016, 55, 10859-10869.	4.0	103
11	Reversible On–Off Switching of a Single-Molecule Magnet via a Crystal-to-Crystal Chemical Transformation. Journal of the American Chemical Society, 2017, 139, 11714-11717.	13.7	97
12	Reversible on–off switching of both spin crossover and single-molecule magnet behaviours <i>via</i> a crystal-to-crystal transformation. Chemical Science, 2018, 9, 7986-7991.	7.4	88
13	Detailed Magnetic Studies on Co(N3)2(4-acetylpyridine)2: a Weak-Ferromagnet with a Very Big Canting Angle. Inorganic Chemistry, 2008, 47, 5720-5726.	4.0	86
14	Development of <scp>Singleâ€Molecule</scp> Magnets ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1005-1018.	4.9	77
15	A Docosanuclear {Mo ₈ Mn ₁₄ } Cluster Based on [Mo(CN) ₇] ^{4â^3} . Angewandte Chemie - International Edition, 2010, 49, 5081-5084.	13.8	72
16	Spin canting, metamagnetism, and single-chain magnetic behaviour in a cyano-bridged homospin iron(<scp>ii</scp>) compound. Chemical Communications, 2015, 51, 4360-4363.	4.1	66
17	Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nature Chemistry, 2019, 11, 248-253.	13.6	66
18	[Cu(tn)]3[W(CN)8]2·3H2O and [Cu(pn)]3[W(CN)8]2·3H2O: Two Novel Cu(II)â^'W(V) Cyano-Bridged Two-Dimensional Coordination Polymers with Metamagnetism. Chemistry of Materials, 2003, 15, 2094-2098.	6.7	55

#	Article	IF	Citations
19	Single molecule magnet behavior observed in a 1-D dysprosium chain with quasi-D _{5h} symmetry. Dalton Transactions, 2015, 44, 20834-20838.	3.3	55
20	Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds. Scientific Reports, 2016, 6, 24372.	3.3	52
21	Reversible On–Off Switching of the Hysteretic Spin Crossover in a Cobalt(II) Complex via Crystal to Crystal Transformation. Inorganic Chemistry, 2019, 58, 11589-11598.	4.0	50
22	Single-molecule magnet behaviour in a dysprosium-triradical complex. Chemical Communications, 2018, 54, 9726-9729.	4.1	48
23	Syntheses, structures, and magnetic properties of three new chain compounds based on a pentagonal bipyramidal Co(<scp>ii</scp>) building block. CrystEngComm, 2016, 18, 4150-4157.	2.6	47
24	Two-dimensional frameworks formed by pentagonal bipyramidal cobalt(<scp>ii</scp>) ions and hexacyanometallates: antiferromagnetic ordering, metamagnetism and slow magnetic relaxation. Dalton Transactions, 2017, 46, 9088-9096.	3.3	46
25	Syntheses and magnetic properties of a pyrimidyl-substituted nitronyl nitroxide radical and its cobalt(<scp>ii</scp>) complexes. Chemical Communications, 2016, 52, 5033-5036.	4.1	42
26	Spin Crossover in [Fe(2-Picolylamine) ₃] ²⁺ Adjusted by Organosulfonate Anions. Inorganic Chemistry, 2015, 54, 7857-7867.	4.0	41
27	Correlating Charge Transport Properties of Conjugated Polymers in Solution Aggregates and Thinâ€Film Aggregates. Angewandte Chemie - International Edition, 2021, 60, 20483-20488.	13.8	40
28	End-On Azido-Bridged 3d–4f Complexes Showing Single-Molecule-Magnet Property. Inorganic Chemistry, 2013, 52, 7314-7316.	4.0	39
29	Record Antiferromagnetic Coupling for a 3d/4d Cyanide-Bridged Compound. Journal of the American Chemical Society, 2014, 136, 9922-9924.	13.7	37
30	Enhanced Singleâ€Chain Magnet Behavior via Anisotropic Exchange in a Cyanoâ€Bridged Mo ^{lll} –Mn ^{ll} Chain. Angewandte Chemie - International Edition, 2020, 59, 10379-10384.	13.8	35
31	Two Interpenetrated Cobalt(II) Metal–Organic Frameworks with Guest-Dependent Structures and Field-Induced Single-Ion Magnet Behaviors. Crystal Growth and Design, 2018, 18, 5270-5278.	3.0	32
32	Synthesis, crystal structure and magnetic properties of a Cull–WV/IVbimetallic complex with a novel open framework structure. Dalton Transactions, 2003, , 3283-3287.	3.3	31
33	Structural and magnetic tuning from a field-induced single-ion magnet to a single-chain magnet by anions. Inorganic Chemistry Frontiers, 2015, 2, 846-853.	6.0	31
34	A One-Dimensional Magnet Based on [MoIII(CN)7]4–. Inorganic Chemistry, 2016, 55, 5107-5109.	4.0	29
35	A cyano-bridged coordination nanotube showing field-induced slow magnetic relaxation. CrystEngComm, 2017, 19, 5707-5711.	2.6	29
36	Determination of magnetic anisotropy in a multinuclear Tb ^{III} -based single-molecule magnet. Chemical Communications, 2015, 51, 10373-10376.	4.1	28

3

#	Article	lF	Citations
37	Syntheses, structures and magnetic properties of the lanthanide complexes of the pyrimidyl-substituted nitronyl nitroxide radical. Dalton Transactions, 2017, 46, 10452-10461.	3.3	28
38	Slow Magnetic Relaxation in One-Dimensional Azido-Bridged Co ^{II} Complexes. Inorganic Chemistry, 2017, 56, 8058-8067.	4.0	28
39	Heterometallic M ^{II} Ln ^{III} (M = Co/Zn; Ln = Dy/Y) Complexes with Pentagonal Bipyramidal 3d Centers: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 15526-15536.	4.0	28
40	Precise tracking and modulating aggregation structures of conjugated copolymers in solutions. Polymer Chemistry, 2020, $11,3716-3722$.	3.9	24
41	Syntheses, structures, and magnetic properties of a family of end-on azido-bridged Cu ^{ll} –Ln ^{lll} complexes. Dalton Transactions, 2017, 46, 7232-7241.	3.3	23
42	Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II) Coordination Polymers with 2,4,6-Tris(4-pyridyl)-1,3,5-triazine. Inorganics, 2017, 5, 90.	2.7	23
43	Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles. Journal of the American Chemical Society, 2020, 142, 15852-15859.	13.7	23
44	Single-ion magnetism in seven-coordinate Yb ^{III} complexes with distorted D _{5h} coordination geometry. Dalton Transactions, 2017, 46, 12884-12892.	3.3	23
45	Regulation of High Miscibility for Efficient Chargeâ€Transport in nâ€Doped Conjugated Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
46	A family of lanthanide compounds with reduced nitronyl nitroxide diradical: syntheses, structures and magnetic properties. Dalton Transactions, 2018, 47, 7925-7933.	3.3	20
47	Syntheses, structures, and magnetic properties of three two-dimensional cobalt(<scp>ii</scp>) single-ion magnets with a Co ^{II} N ₄ X ₂ octahedral geometry. CrystEngComm, 2019, 21, 3176-3185.	2.6	20
48	Macrocycle supported dimetallic lanthanide complexes with slow magnetic relaxation in Dy ₂ analogues. Dalton Transactions, 2020, 49, 14169-14179.	3.3	20
49	Slow Magnetic Relaxation and Spin rossover Behavior in a Bicomponent Ionâ€Pair Cobalt(II) Complex. European Journal of Inorganic Chemistry, 2017, 2017, 3862-3867.	2.0	18
50	High-coordinate Co ^{II} and Fe ^{II} compounds constructed from an asymmetric tetradentate ligand show slow magnetic relaxation behavior. Dalton Transactions, 2018, 47, 8940-8948.	3.3	18
51	Trigonal bipyramidal magnetic molecules based on [MoIII(CN)6]3â^'. Chemical Communications, 2010, 46, 4484.	4.1	17
52	Spin crossover in hydrogen-bonded frameworks of Fe ^{II} complexes with organodisulfonate anions. Dalton Transactions, 2019, 48, 8815-8825.	3.3	17
53	Revealing the effect of oligo(ethylene glycol) side chains on <scp>nâ€doping</scp> process in <scp>FBDPPV</scp> â€based polymers. Journal of Polymer Science, 2022, 60, 538-547.	3.8	16
54	Spin crossover behaviour in one-dimensional Fe ^{II} compounds based on the $[M(CN) < sub>4 < /sub>] < sup>2â^2 < /sup>(M = Pd, Pt) units. Dalton Transactions, 2015, 44, 9682-9690.$	3.3	15

#	Article	IF	CITATIONS
55	Modulating the Structures and Magnetic Properties of Dy(III) Single-Molecule Magnets through Acid–Base Regulation. Inorganic Chemistry, 2022, 61, 2272-2283.	4.0	13
56	Syntheses, structures, and magnetic properties of three new cyano-bridged complexes based on the [Mn(CN)6]3â~'building block. Dalton Transactions, 2015, 44, 15189-15197.	3.3	12
57	Controllable Transformation between the Kinetically and Thermodynamically Stable Aggregates in a Solution of Conjugated Polymers. Macromolecules, 2021, 54, 5815-5824.	4.8	12
58	Synthesis and crystal structure of a phthalate-bridged copper(II) complex {[Cu(L)(Phen)(H2O)]â <h2o}n. 2005,="" 35,="" 381-384.<="" chemical="" crystallography,="" journal="" of="" td=""><td>1.1</td><td>11</td></h2o}n.>	1.1	11
59	Three-Dimensional Fe ^{II} –[Mo ^{III} (CN) ₇] ^{4–} Magnets with Ordering below 65 K and Distinct Topologies Induced by Cation Identity. Inorganic Chemistry, 2017, 56, 7182-7189.	4.0	10
60	Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers. Polymer Chemistry, 2021, 12, 370-378.	3.9	10
61	Detailed magnetic study on the formato-bridged MOFs with anion-tunable magnetic properties. Science China Chemistry, 2012, 55, 1055-1063.	8.2	9
62	Zeroâ€field Slow Magnetic Relaxation Behavior of Dy ₂ in a Series of Dinuclear {Ln ₂ } (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	9
63	A family of lanthanide complexes with a bis-tridentate nitronyl nitroxide radical: syntheses, structures and magnetic properties. Dalton Transactions, 2019, 48, 10337-10345.	3.3	8
64	A Threeâ€Dimensional Mn II â€[Mo III (CN) 7] 4– Ferrimagnet Containing Formate as a Second Bridging Ligand. Chinese Journal of Chemistry, 2019, 37, 19-24.	4.9	8
65	Syntheses, structures, and magnetic properties of three new Mn ^{II} –[Mo ^{III} (CN) ₇] ^{4Ⱂ} molecular magnets. Dalton Transactions, 2018, 47, 11873-11881.	3.3	7
66	Syntheses and magnetic properties of a bis-tridentate nitronyl nitroxide radical and its metal complexes. Dalton Transactions, 2019, 48, 4774-4778.	3.3	7
67	Macrocycle supported dinuclear lanthanide complexes with different \hat{l}^2 -diketonate co-ligands displaying zero field single-molecule magnetic behaviour. New Journal of Chemistry, 2022, 46, 11722-11733.	2.8	6
68	Correlating Charge Transport Properties of Conjugated Polymers in Solution Aggregates and Thinâ€Film Aggregates. Angewandte Chemie, 2021, 133, 20646-20651.	2.0	5
69	Controlling Solutionâ€State Aggregation and Solidâ€State Microstructures of Conjugated Polymers by Tuning Backbone Conformation. Macromolecular Rapid Communications, 2022, , 2200069.	3.9	5
70	Regulation of High Miscibility for Efficient Chargeâ€Transport in nâ€doped Conjugated Polymers. Angewandte Chemie, 0, , .	2.0	3
71	Two three-dimensional [MollI(CN)7]4â^'-based magnets showing new topologies and ferrimagnetic ordering below 80 K. Dalton Transactions, 2019, 48, 8843-8852.	3.3	2
72	Tuneable structures and magnetic properties of pseudohalo-bridged dinuclear Ni(<scp>ii</scp>) complexes derived from {N ₄ } and {N ₃ O} donor ligands. CrystEngComm, 2021, 23, 3371-3382.	2.6	2

#	Article	IF	CITATIONS
73	Syntheses, structures and magnetic properties of a series of lanthanide complexes with reduced nitronyl nitroxide radical ligands. Inorganica Chimica Acta, 2021, 520, 120308.	2.4	2
74	Inside Cover: A Threeâ€Dimensional Mn II â€{Mo III (CN) 7] 4– Ferrimagnet Containing Formate as a Second Bridging Ligand (Chin. J. Chem. 1/2019). Chinese Journal of Chemistry, 2019, 37, 2-2.	4.9	0