Charles N Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ESTIMATION OF RISK DUE TO LOW DOSES OF MICROORGANISMS: A COMPARISON OF ALTERNATIVE METHODOLOGIES. American Journal of Epidemiology, 1983, 118, 573-582.	1.6	347
2	Development of a Dose-Response Model for SARS Coronavirus. Risk Analysis, 2010, 30, 1129-1138.	1.5	314
3	Sensitive populations: who is at the greatest risk?. International Journal of Food Microbiology, 1996, 30, 113-123.	2.1	303
4	Modeling the Risk From Giardia and Viruses in Drinking Water. Journal - American Water Works Association, 1991, 83, 76-84.	0.2	290
5	Inactivation of Feline Calicivirus and Adenovirus Type 40 by UV Radiation. Applied and Environmental Microbiology, 2003, 69, 577-582.	1.4	246
6	Risk Assessment of Virus in Drinking Water. Risk Analysis, 1993, 13, 545-552.	1.5	235
7	Risk assessment and control of waterborne giardiasis American Journal of Public Health, 1991, 81, 709-713.	1.5	194
8	Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S Environmental Science: Water Research and Technology, 2021, 7, 504-520.	1.2	185
9	It's Not the Heat, It's the Humidity: Wet Weather Increases Legionellosis Risk in the Greater Philadelphia Metropolitan Area. Journal of Infectious Diseases, 2005, 192, 2066-2073.	1.9	168
10	Waterborne rotavirus: A risk assessment. Water Research, 1996, 30, 2929-2940.	5.3	166
11	Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus. Applied and Environmental Microbiology, 2003, 69, 3979-3985.	1.4	165
12	Dose Response Models For Infectious Gastroenteritis. Risk Analysis, 1999, 19, 1251-1260.	1.5	163
13	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	3.9	153
14	Assessment of the dose-response relationship of Campylobacter jejuni. International Journal of Food Microbiology, 1996, 30, 101-111.	2.1	145
15	Assessing the risk posed by oocysts in drinking water. Journal - American Water Works Association, 1996, 88, 131-136.	0.2	143
16	Risk Assessment of Opportunistic Bacterial Pathogens in Drinking Water. Reviews of Environmental Contamination and Toxicology, 1997, 152, 57-83.	0.7	136
17	Criteria for Selection of Surrogates Used To Study the Fate and Control of Pathogens in the Environment. Applied and Environmental Microbiology, 2012, 78, 1969-1977.	1.4	123
18	Disinfection under Dynamic Conditions: Modification of Hom's Model for Decay. Environmental Science & Technology, 1994, 28, 1367-1369.	4.6	121

#	Article	IF	CITATIONS
19	Estimation of averages in truncated samples. Environmental Science & Technology, 1990, 24, 912-919.	4.6	111
20	Conditional Dose-Response Relationships for Microorganisms: Development and Application. Risk Analysis, 2002, 22, 455-463.	1.5	98
21	A Quantitative Microbial Risk Assessment Model for Legionnaires' Disease: Animal Model Selection and Doseâ€Response Modeling. Risk Analysis, 2007, 27, 1581-1596.	1.5	94
22	A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS oV) in a Hospital Setting Through Bioaerosols. Risk Analysis, 2019, 39, 2608-2624.	1.5	94
23	Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Research, 2018, 134, 261-279.	5.3	93
24	Development of a dose-response relationship for Escherichia coli O157:H7. International Journal of Food Microbiology, 2000, 56, 153-159.	2.1	91
25	A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 2005, 99, 310-322.	1.4	90
26	Inactivation of enteric adenovirus and feline calicivirus by ozone. Water Research, 2005, 39, 3650-3656.	5.3	86
27	Prevalence of shigellosis in the U.S.: consistency with dose-response information. International Journal of Food Microbiology, 1996, 30, 87-99.	2.1	81
28	Ten Most Important Accomplishments in Risk Analysis, 1980–2010. Risk Analysis, 2012, 32, 771-781.	1.5	79
29	Microbial Dose Response Modeling: Past, Present, and Future. Environmental Science & Technology, 2015, 49, 1245-1259.	4.6	79
30	Estimation of bioaerosol risk of infection to residents adjacent to a land applied biosolids site using an empirically derived transport model. Journal of Applied Microbiology, 2005, 98, 397-405.	1.4	77
31	Risk-Based Critical Concentrations of <i>Legionella pneumophila</i> for Indoor Residential Water Uses. Environmental Science & Technology, 2019, 53, 4528-4541.	4.6	77
32	How to average microbial densities to characterize risk. Water Research, 1996, 30, 1036-1038.	5.3	76
33	Kinetics of microbial inactivation by chlorine—I Review of results in demand-free systems. Water Research, 1984, 18, 1443-1449.	5.3	73
34	Persistence of Ebola Virus in Sterilized Wastewater. Environmental Science and Technology Letters, 2015, 2, 245-249.	3.9	71
35	Developing an action level for Cryptosporidium. Journal - American Water Works Association, 1995, 87, 81-84.	0.2	69
36	The Effect of Ongoing Exposure Dynamics in Dose Response Relationships. PLoS Computational Biology, 2009, 5, e1000399.	1.5	63

#	Article	IF	CITATIONS
37	Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments. Risk Analysis, 1997, 17, 107-113.	1.5	62
38	Dose response models for infectious gastroenteritis. Risk Analysis, 1999, 19, 1251-1260.	1.5	61
39	Inactivation of Enteric Adenovirus and Feline Calicivirus by Chlorine Dioxide. Applied and Environmental Microbiology, 2005, 71, 3100-3105.	1.4	60
40	Ebola Virus Persistence in the Environment: State of the Knowledge and Research Needs. Environmental Science and Technology Letters, 2015, 2, 2-6.	3.9	58
41	Reliability of pathogen control in direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Research, 2017, 122, 258-268.	5.3	56
42	Legionnaires' disease: evaluation of a quantitative microbial risk assessment model. Journal of Water and Health, 2008, 6, 149-166.	1.1	54
43	Application of quantitative microbial risk assessment for selection of microbial reduction targets for hard surface disinfectants. American Journal of Infection Control, 2014, 42, 1165-1172.	1.1	54
44	Quantitative assessment of risk reduction from hand washing with antibacterial soaps. Journal of Applied Microbiology, 2002, 92, 136S-143S.	1.4	53
45	Inactivation of E. coli by combined action of free chlorine and monochloramine. Water Research, 1991, 25, 1027-1032.	5.3	52
46	Water quality and disinfection kinetics. Journal - American Water Works Association, 1996, 88, 95-103.	0.2	52
47	Wastewater Disinfection by Peracetic Acid: Assessment of Models for Tracking Residual Measurements and Inactivation. Water Environment Research, 2007, 79, 775-787.	1.3	52
48	Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. Water Research, 2017, 119, 288-303.	5.3	51
49	Waterborne adenovirus: a risk assessment. Water Science and Technology, 1997, 35, 1.	1.2	50
50	On Modeling Correlated Random Variables in Risk Assessment. Risk Analysis, 1999, 19, 1205-1214.	1.5	49
51	Quantitative Microbial Risk Assessment Model for Legionnaires' Disease: Assessment of Human Exposures for Selected Spa Outbreaks. Journal of Occupational and Environmental Hygiene, 2007, 4, 634-646.	0.4	49
52	Doseâ€Response Models for Inhalation of <i>Bacillus anthracis</i> Spores: Interspecies Comparisons. Risk Analysis, 2008, 28, 1115-1124.	1.5	48
53	An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance. Environmental Engineering Science, 2018, 35, 1005-1011.	0.8	47
54	LINKING MICROBIOLOGICAL CRITERIA FOR FOODS WITH QUANTITATIVE RISK ASSESSMENT. Journal of Food Safety, 1995, 15, 121-132.	1.1	46

#	Article	IF	CITATIONS
55	Effect of initial microbial density on inactivation of Giardia muris by ozone. Water Research, 2003, 37, 2980-2988.	5.3	44
56	On the Risk of Mortality to Primates Exposed to Anthrax Spores. Risk Analysis, 2002, 22, 189-193.	1.5	43
57	A risk assessment framework for the evaluation of skin infections and the potential impact of antibacterial soap washing. American Journal of Infection Control, 1999, 27, S26-S33.	1.1	42
58	Chlorine and ozone disinfection of Encephalitozoon intestinalis spores. Water Research, 2005, 39, 2369-2375.	5.3	41
59	Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment. Water Research, 2016, 101, 203-213.	5.3	41
60	The WATERS Network: An Integrated Environmental Observatory Network for Water Research. Environmental Science & Technology, 2007, 41, 6642-6647.	4.6	40
61	Kinetics of microbial inactivation by chlorine—ll Kinetics in the presence of chlorine demand. Water Research, 1984, 18, 1451-1454.	5.3	39
62	Bioaerosol Emission Rate and Plume Characteristics during Land Application of Liquid Class B Biosolids. Environmental Science & Technology, 2005, 39, 1584-1590.	4.6	39
63	Interaction Between Phenanthrene and Zinc in Their Toxicity to the Sheepshead Minnow (Cyprinodon) Tj ETQq1	1 0.7843 2.1	14 _g gBT /Ove
64	Estimated Occupational Risk from Bioaerosols Generated during Land Application of Class B Biosolids. Journal of Environmental Quality, 2008, 37, 2311-2321.	1.0	38
65	On modeling correlated random variables in risk assessment. Risk Analysis, 1999, 19, 1205-1214.	1.5	37
66	Timeâ€Doseâ€Response Models for Microbial Risk Assessment. Risk Analysis, 2009, 29, 648-661.	1.5	37
67	Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending. International Journal of Environmental Research and Public Health, 2017, 14, 635.	1.2	37
68	Adsorption of cadmium to kaolinite in the presence of organic material. Water, Air, and Soil Pollution, 1986, 27, 131-140.	1,1	36
69	Comparison of tissue culture and animal models for assessment of Cryptospridium parvum infection. Experimental Parasitology, 2002, 101, 97-106.	0.5	35
70	Development and Validation of Dose-Response Relationship for Listeria monocytogenes. Quantitative Microbiology, 1999, 1, 89-102.	0.5	34
71	Characterizing the Risk of Infection from <i>Mycobacterium tuberculosis</i> in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment. Risk Analysis, 2009, 29, 355-365.	1.5	34
72	Hygienic sustainability of site location of wastewater treatment plants. Desalination, 2010, 253, 106-111.	4.0	34

#	Article	IF	CITATIONS
73	Hygienic sustainability of site location of wastewater treatment plants. Desalination, 2010, 253, 51-56.	4.0	34
74	Recent advances in measuring and modeling reverse osmosis membrane fouling in seawater desalination: a review. Journal of Water Reuse and Desalination, 2013, 3, 85-101.	1.2	34
75	Quantitative Microbial Risk Assessment and Molecular Biology: Paths to Integration. Environmental Science & Technology, 2020, 54, 8539-8546.	4.6	34
76	Reduction of ion-exchange equilibria data using an error in variables approach. AICHE Journal, 1994, 40, 556-569.	1.8	33
77	Implications of Limits of Detection of Various Methods for <i>Bacillus anthracis</i> in Computing Risks to Human Health. Applied and Environmental Microbiology, 2009, 75, 6331-6339.	1.4	33
78	Nondeterministic Computational Fluid Dynamics Modeling of <i>Escherichia coli</i> Inactivation by Peracetic Acid in Municipal Wastewater Contact Tanks. Environmental Science & Technology, 2015, 49, 7265-7275.	4.6	33
79	Quantitative Microbial Risk Assessment for Recreational Exposure to Water Bodies in Philadelphia. Water Environment Research, 2015, 87, 211-222.	1.3	32
80	The ecology of acidâ€fast organisms in water supply, treatment, and distribution systems. Journal - American Water Works Association, 1983, 75, 139-144.	0.2	31
81	MANAGING HEALTH RISKS FROM DRINKING WATERA REPORT TO THE WALKERTON INQUIRY. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1635-1823.	1.1	31
82	Seasonal Assessment of Opportunistic Premise Plumbing Pathogens in Roof-Harvested Rainwater Tanks. Environmental Science & Technology, 2017, 51, 1742-1753.	4.6	31
83	Quantitative description of mixture toxicity: Effect of level of response on interactions. Environmental Toxicology and Chemistry, 1996, 15, 1429-1437.	2.2	30
84	Use of quantitative microbial risk assessment for evaluation of the benefits of laundry sanitation. American Journal of Infection Control, 1999, 27, S34-S39.	1.1	29
85	Risk Assessment of waterborne coxsackievirus. Journal - American Water Works Association, 2003, 95, 122-131.	0.2	29
86	Countercurrent gas/liquid flow and mixing: Implications for water disinfection. International Journal of Multiphase Flow, 2009, 35, 171-184.	1.6	29
87	Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Research, 2017, 109, 310-326.	5.3	28
88	Distribution of Cryptosporidium oocysts in a water supply. Water Research, 1996, 30, 2251-2254.	5.3	27
89	Doseâ€Response Assessment for Influenza A Virus Based on Data Sets of Infection with its Live Attenuated Reassortants. Risk Analysis, 2012, 32, 555-565.	1.5	26
90	Chlorine dynamics during inactivation of coliforms, acid-fast bacteria and yeasts. Water Research, 1980, 14, 1749-1757.	5.3	25

#	Article	IF	CITATIONS
91	Semiâ€quantitative characterization of electroporationâ€assisted disinfection processes for inactivation ofGiardiaandCryptosporidium. Journal of Applied Microbiology, 1999, 86, 899-905.	1.4	25
92	Risks from <i>Ebolavirus</i> Discharge from Hospitals to Sewer Workers. Water Environment Research, 2017, 89, 357-368.	1.3	25
93	Required water temperature in hotel plumbing to control Legionella growth. Water Research, 2020, 182, 115943.	5.3	25
94	Continuous Flow Residence Time Distribution Function Characterization. Journal of Environmental Engineering, ASCE, 1997, 123, 107-114.	0.7	24
95	CFD Design Approach for Chlorine Disinfection Processes. Journal - American Water Works Association, 2004, 96, 138-150.	0.2	24
96	Coronavirus and Risk Analysis. Risk Analysis, 2020, 40, 660-661.	1.5	24
97	Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. FEMS Microbes, 2021, 2, .	0.8	24
98	Benefits of using a disinfectant residual. Journal - American Water Works Association, 1999, 91, 65-69.	0.2	23
99	The utility of endotoxins as a surrogate indicator in potable water microbiology. Water Research, 1983, 17, 803-807.	5.3	22
100	Microbial alterations in water distribution systems and their relationship to physical–chemical characteristics. Journal - American Water Works Association, 1983, 75, 475-481.	0.2	22
101	Toluene-humic acid association equilibria: isopiestic measurements. Environmental Science & Technology, 1985, 19, 643-645.	4.6	22
102	The Role of Risk Analysis in Understanding Bioterrorism. Risk Analysis, 2002, 22, 671-677.	1.5	22
103	MANAGING THE MICROBIOLOGICAL RISKS OF DRINKING WATER. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 1591-1617.	1.1	22
104	Computational Fluid Dynamics Analysis of the Effects of Reactor Configuration on Disinfection Efficiency. Water Environment Research, 2006, 78, 909-919.	1.3	22
105	Incorporating time postinoculation into a dose-response model ofYersinia pestisin mice. Journal of Applied Microbiology, 2009, 107, 727-735.	1.4	22
106	Animal and Human Doseâ€Response Models for <i>Brucella</i> Species. Risk Analysis, 2011, 31, 1576-1596.	1.5	22
107	Reverse QMRA as a Decision Support Tool: Setting Acceptable Concentration Limits for Pseudomonas aeruginosa and Naegleria fowleri. Water (Switzerland), 2019, 11, 1850.	1.2	22
108	A mechanistic kinetic model for chlorine disinfection. Environmental Science & Technology, 1980, 14, 339-340.	4.6	21

#	Article	IF	CITATIONS
109	Dose-Response Analysis Using Spreadsheets. Risk Analysis, 1994, 14, 1097-1100.	1.5	21
110	Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. Water Research, 2022, 211, 117997.	5.3	21
111	Acceptable Microbial Risk. Journal - American Water Works Association, 1996, 88, 8-8.	0.2	20
112	Moment Analysis of Tracer Experiments. Journal of Environmental Engineering, ASCE, 1996, 122, 1121-1130.	0.7	20
113	Toxic and Contaminant Concerns Generated by Hurricane Katrina. Journal of Environmental Engineering, ASCE, 2006, 132, 565-566.	0.7	20
114	Recreational use assessment of water-based activities, using time-lapse construction cameras. Journal of Exposure Science and Environmental Epidemiology, 2012, 22, 281-290.	1.8	20
115	Disinfection of Ebola Virus in Sterilized Municipal Wastewater. PLoS Neglected Tropical Diseases, 2017, 11, e0005299.	1.3	20
116	Epidemiology, Microbiology, and Risk Assessment of Waterborne Pathogens Including Cryptosporidium. Journal of Food Protection, 2000, 63, 827-831.	0.8	19
117	Design Criteria for Inactivation of Cryptosporidium by Ozone in Drinking Water. Ozone: Science and Engineering, 2001, 23, 259-284.	1.4	19
118	Chlorine Demand in disinfecting Water Mains. Journal - American Water Works Association, 2002, 94, 97-102.	0.2	19
119	Development of Regression Models with Belowâ€Detection Data. Journal of Environmental Engineering, ASCE, 1993, 119, 214-230.	0.7	18
120	Effect of sulfate on anaerobic processes fed with dual substrates. Water Science and Technology, 1995, 31, 101.	1.2	18
121	Correlating Cryptosporidium removal using dissolved air flotation in water treatment. Water Research, 2000, 34, 4116-4119.	5.3	18
122	Doseâ€Response Model ofâ€, <i>Coxiella burnetii</i> â€,(Q Fever). Risk Analysis, 2011, 31, 120-128.	1.5	18
123	Kinetics of inactivation of giardia lamblia by free chlorine. Water Research, 1990, 24, 233-238.	5.3	17
124	A Model for In-vivo Delivered Dose Estimation for InhaledBacillus anthracisSpores in Humans with Interspecies Extrapolation. Environmental Science & Technology, 2011, 45, 5828-5833.	4.6	17
125	Efficacy of Chlorine Dioxide Tablets on Inactivation of <i>Cryptosporidium</i> Oocysts. Environmental Science & Technology, 2014, 48, 5849-5856.	4.6	17
126	Comparison of pathogen-derived â€~total risk' with indicator-based correlations for recreational (swimming) exposure. Environmental Science and Pollution Research, 2019, 26, 30614-30624.	2.7	17

#	Article	IF	CITATIONS
127	Action Levels for SARS oVâ€2 in Air: Preliminary Approach. Risk Analysis, 2021, 41, 705-709.	1.5	17
128	A Quantitative Risk Estimation Platform for Indoor Aerosol Transmission of COVIDâ€19. Risk Analysis, 2022, 42, 2075-2088.	1.5	17
129	Repeated exposure ofEscherichia coli to free chlorine: Production of strains possessing altered sensitivity. Water, Air, and Soil Pollution, 1981, 16, 233-242.	1.1	16
130	Assessment of benefits from use of antimicrobial hand products: Reduction in risk from handling ground beef. International Journal of Hygiene and Environmental Health, 2005, 208, 461-466.	2.1	16
131	On the Quarantine Period for Ebola Virus. PLOS Currents, 2014, 6, .	1.4	16
132	Monte Carlo assessment of microbial risk associated with landfilling of fecal material. Water Environment Research, 1996, 68, 1123-1131.	1.3	15
133	Neural networks provide superior description of Giardia lamblia inactivation by free chlorine. Water Research, 2004, 38, 3449-3457.	5.3	15
134	Alteration of chemical and disinfectant properties of hypochlorite by sodium, potassium, and lithium. Environmental Science & Technology, 1986, 20, 822-826.	4.6	14
135	Wastewater disinfection and infectious disease risks. Critical Reviews in Environmental Control, 1986, 17, 1-20.	0.7	14
136	Quantification of the Relationship between Bacterial Kinetics and Host Response for Monkeys Exposed to Aerosolized <i>Francisella tularensis</i> . Applied and Environmental Microbiology, 2011, 77, 485-490.	1.4	14
137	Risk of Illness with <i>Salmonella</i> due to Consumption of Raw Unwashed Vegetables Irrigated with Water from the BogotÃ; River. Risk Analysis, 2017, 37, 733-743.	1.5	14
138	Coronavirus and Environmental Engineering Science. Environmental Engineering Science, 2020, 37, 233-234.	0.8	14
139	Prioritizing Risks and Uncertainties from Intentional Release of Selected Category A Pathogens. PLoS ONE, 2012, 7, e32732.	1.1	14
140	Micromixing and dispersion in chlorine contact chambers. Environmental Technology Letters, 1988, 9, 35-44.	0.4	13
141	Understanding protozoa in your watershed. Journal - American Water Works Association, 1997, 89, 62-73.	0.2	13
142	The Milwaukee Cryptosporidium outbreak: assessment of incubation time and daily attack rate. Journal of Water and Health, 2004, 2, 59-69.	1.1	13
143	Full factorial study of pipe characteristics, stagnation times, and water quality. AWWA Water Science, 2020, 2, e1204.	1.0	13
144	Influence of Hot Water Temperature and Use Patterns on Microbial Water Quality in Building Plumbing Systems. Environmental Engineering Science, 2022, 39, 309-319.	0.8	13

#	Article	IF	CITATIONS
145	Maximum likelihood analysis of disinfection kinetics. Water Research, 1988, 22, 669-677.	5.3	12
146	Biological sulfide prestripping for metal and COD removal. Water Environment Research, 1993, 65, 645-649.	1.3	12
147	Kinetics of electroporation-assisted chlorination of Giardia muris. Water Research, 1999, 33, 1761-1766.	5.3	12
148	Dose-response time modelling for highly pathogenic avian influenza A (H5N1) virus infection. Letters in Applied Microbiology, 2011, 53, 438-444.	1.0	12
149	Application of ion exchangers to recovery of metals from semiconductor wastes. Reactive Polymers, Ion Exchangers, Sorbents, 1984, 2, 61-70.	0.1	11
150	THM Formation by the Transfer of Active Chlorine From Monochloramine to Phloroacetophenone. Journal - American Water Works Association, 1991, 83, 62-66.	0.2	11
151	New quantitative approach for analysis of binary toxic mixtures. Environmental Toxicology and Chemistry, 1994, 13, 149-156.	2.2	11
152	Protozoan monitoring: from the ICR to the ESWTR. Journal - American Water Works Association, 1995, 87, 50-59.	0.2	11
153	Quantification of the Effects of Age on the Dose Response of <i>Variola major</i> in Suckling Mice. Human and Ecological Risk Assessment (HERA), 2009, 15, 1245-1256.	1.7	11
154	Doseâ€Response Model of Rocky Mountain Spotted Fever (RMSF) for Human. Risk Analysis, 2011, 31, 1610-1621.	1.5	11
155	Development of metamodels for predicting aerosol dispersion in ventilated spaces. Atmospheric Environment, 2011, 45, 1876-1887.	1.9	11
156	Frameworks for assessing reliability of multiple, independent barriers in potable water reuse. Water Science and Technology, 1998, 38, 1.	1.2	10
157	Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia. Water (Switzerland), 2018, 10, 92.	1.2	10
158	Unified kinetic treatment for growth on dual nutrients. Biotechnology and Bioengineering, 1994, 44, 154-164.	1.7	9
159	Predicting disinfection performance in continuous flow systems from batch disinfection kinetics. Water Science and Technology, 1998, 38, 171-179.	1.2	9
160	Effect of initial microbial density on inactivation of <i>Escherichia coli</i> by monochloramine. Journal of Environmental Engineering and Science, 2008, 7, 237-245.	0.3	9
161	A quantitative risk assessment method for synthetic biology products in the environment. Science of the Total Environment, 2019, 696, 133940.	3.9	9
162	Generalization of independent response model for toxic mixtures. Chemosphere, 1997, 34, 699-710.	4.2	8

#	Article	IF	CITATIONS
163	Dose-response model forBurkholderia pseudomallei(melioidosis). Journal of Applied Microbiology, 2008, 105, 1361-1371.	1.4	8
164	How Sensitive Is Safe? Risk-Based Targets for Ambient Monitoring of Pathogens. IEEE Sensors Journal, 2010, 10, 668-673.	2.4	8
165	Multiple Linear Regression Model Approach for Aerosol Dispersion in Ventilated Spaces Using Computational Fluid Dynamics and Dimensional Analysis. Journal of Environmental Engineering, ASCE, 2010, 136, 638-649.	0.7	8
166	Doseâ€Response Models Incorporating Aerosol Size Dependency for <i>Francisella tularensis</i> . Risk Analysis, 2014, 34, 911-928.	1.5	8
167	Incorporating Timeâ€Doseâ€Response into <i>Legionella</i> Outbreak Models. Risk Analysis, 2017, 37, 291-304.	1.5	8
168	Editorial Perspectives: will SARS-CoV-2 reset public health requirements in the water industry? Integrating lessons of the past and emerging research. Environmental Science: Water Research and Technology, 2020, 6, 1761-1764.	1.2	8
169	Sodium alteration of chlorine equilibriums. Quantitative description. Environmental Science & Technology, 1981, 15, 1243-1244.	4.6	7
170	A volumetric method for assessing Giardia inactivation. Journal - American Water Works Association, 1994, 86, 115-120.	0.2	7
171	Bacterial levels of new mains. Journal - American Water Works Association, 1999, 91, 78-84.	0.2	7
172	Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics. Chemical Engineering Journal, 2010, 161, 9-18.	6.6	7
173	Application of QMRA to MAR operations for safe agricultural water reuses in coastal areas. Water Research X, 2020, 8, 100062.	2.8	7
174	Effect of sulfate on anaerobic processes fed with dual substrates. Water Science and Technology, 1995, 31, 101-107.	1.2	7
175	Field observations on the occurrence of new indicators of disinfection efficiency. Water Research, 1985, 19, 323-329.	5.3	6
176	Use of CFD for Wastewater Disinfection Process Analysis: E.coli Inactivation with Peroxyacetic Acid (PAA). International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	6
177	Development of a CFD-Based Artificial Neural Network Metamodel in a Wastewater Disinfection Process with Peracetic Acid. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	6
178	Kinetic limitations on the selective precipitation treatment of electronics wastes. Water, Air, and Soil Pollution, 1985, 24, 253-265.	1.1	5
179	Statistics of Microbial Disinfection. Water Science and Technology, 1989, 21, 197-201.	1.2	5
180	Error in Variables Parameter Estimation. Journal of Environmental Engineering, ASCE, 1989, 115, 259-264.	0.7	5

#	Article	IF	CITATIONS
181	The Possibility for "Natural" Generation of Chlorinated Organic Compounds. Risk Analysis, 1994, 14, 143-145.	1.5	5
182	Predicting disinfection performance in continuous flow systems from batch disinfection kinetics. Water Science and Technology, 1998, 38, 171.	1.2	5
183	Classic Doseâ€Response and Time Postinoculation Models for <i>Leptospira</i> . Risk Analysis, 2014, 34, 465-484.	1.5	5
184	Does the use of tubular digesters to treat livestock waste lower the risk of infection from Cryptosporidium parvum and Giardia lamblia?. Journal of Water and Health, 2016, 14, 738-753.	1.1	5
185	Revegetation Using Coal Ash Mixtures. Journal of Environmental Engineering, ASCE, 1985, 111, 559-573.	0.7	4
186	Comment on "Estimating the infection risk in recreational waters from the faecal indicator concentration and from the ratio between pathogens and indicatorsâ€: Water Research, 2001, 35, 3280-3281.	5.3	4
187	Dose-Response Model for Lassa Virus. Human and Ecological Risk Assessment (HERA), 2008, 14, 742-752.	1.7	4
188	Development of Artificial Neural Network Based Metamodels for Inactivation of Anthrax Spores in Ventilated Spaces Using Computational Fluid Dynamics. Journal of the Air and Waste Management Association, 2011, 61, 968-982.	0.9	4
189	Dose-response model of murine typhus (Rickettsia typhi): time post inoculation and host age dependency analysis. BMC Infectious Diseases, 2012, 12, 77.	1.3	4
190	Heavy precipitation, drinking water source, and acute gastrointestinal illness in Philadelphia, 2015-2017. PLoS ONE, 2020, 15, e0229258.	1.1	4
191	Legionnaires' disease in dental offices: Quantifying aerosol risks to dental workers and patients. Journal of Occupational and Environmental Hygiene, 2021, 18, 378-393.	0.4	4
192	Statistical Approaches to Monitoring. Brock/Springer Series in Contemporary Bioscience, 1990, , 412-427.	0.3	4
193	Inactivation of Cryptosporidium parvum with ozone in treated drinking water. Journal of Water Supply: Research and Technology - AQUA, 2004, 53, 287-297.	0.6	4
194	On the existence of ternary interactions in ion exchange. AICHE Journal, 1988, 34, 702-703.	1.8	3
195	Analysis of disinfection data from dilution count experiments. Water Research, 1989, 23, 345-349.	5.3	3
196	Advancing the Quality of Drinking Water: Expert Workshop to Formulate a Research Agenda. Environmental Engineering Science, 2007, 24, 863-872.	0.8	3
197	Response to Comment on "Ebola Virus Persistence in the Environment: State of the Knowledge and Research Needs†Environmental Science and Technology Letters, 2015, 2, 50-51.	3.9	3
198	Optimized Design of Wastewater Disinfection Reactors Based on an Artificial Neural Network		3

Metamodel. , 2016, , .

#	Article	IF	CITATIONS
199	Reproducible Risk Assessment. Risk Analysis, 2016, 36, 1829-1833.	1.5	3
200	Ebola Virus Dose Response Model for Aerosolized Exposures: Insights from Primate Data. Risk Analysis, 2020, 40, 2390-2398.	1.5	3
201	Validation of Batch Disinfection Kinetics of Escherichia coli Inactivation by Monochloramine in a Continuous Flow System. Environmental Engineering Science, 2005, 22, 567-577.	0.8	2
202	Acceptable microbial risk: Cost–benefit analysis of a boil water order for <i>Cryptosporidium</i> . Journal - American Water Works Association, 2013, 105, E189.	0.2	2
203	Discussion on "Potential discharge, attenuation and exposure risk of SARS-CoV-2 in natural water bodies receiving treated wastewater― Npj Clean Water, 2021, 4, .	3.1	2
204	Quantitative Microbial Risk Assessment Model for <i>Legionella</i> : Summary of Methods and Results. , 0, , 486-488.		2
205	Incentive Options for Hazardous Waste Management. Journal of Environmental Systems, 0, 14, 373-393.	1.0	2
206	Inactivation of Giardia Cysts by Ozone after Residual Disappearance. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	2
207	Microbial Dynamics in GAC Filtration of Potable Water. Journal of Environmental Engineering, ASCE, 1983, 109, 956-961.	0.7	1
208	Validation of the Hazard Ranking System for the Assessment of Feedstock Frequencies in Superfund Site Contaminants. Hazardous Waste and Hazardous Materials, 1985, 2, 535-543.	0.4	1
209	The State of <i>Water Environment Research</i> : Looking Back. Water Environment Research, 1996, 68, 3-3.	1.3	1
210	Minding the Machines: Preventing Technological Disasters. Risk Analysis, 2003, 23, 1355-1356.	1.5	1
211	Assessment of <i>B. SUBTILIS</i> as a Surrogate for Inactivation Efficiency of Ozone on <i>C. PARVUM</i> and <i>C. MURIS</i> . Proceedings of the Water Environment Federation, 2005, 2005, 77-99.	0.0	1
212	Wastewater Disinfection by PAA: Relating Residual Measurements and Inactivation. Proceedings of the Water Environment Federation, 2005, 2005, 468-485.	0.0	1
213	IMPACT OF <i>E.COLI</i> INITIAL MICROBIAL DENSITY ON PERACETIC ACID (PAA) AND MONOCHLORAMINE DISINFECTION EFFICIENCY. Proceedings of the Water Environment Federation, 2007, 2007, 386-401.	0.0	1
214	Dose-response models for eastern US, western US and Venezuelan equine encephalitis viruses in mice–Part II: Quantification of the effects of host age on the dose response. Microbial Risk Analysis, 2018, 9, 38-54.	1.3	1
215	Is sodium thiosulfate a suitable neutralizer for chlorine in microbiological determinations?. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1984, 19, 507-520.	0.1	0
216	Editorial on disinfection. Environmental Science & amp; Technology, 1984, 18, 324A-324A.	4.6	0

#	Article	IF	CITATIONS
217	Removal of New Indicators by Coagulation and Filtration. Journal - American Water Works Association, 1985, 77, 67-71.	0.2	Ο
218	Discussion of "Analysis of Inactivation of Giardia lamblia by Chlorine―by Robert M. Clark, Eleanor J. Read, and John C. Hoff (February, 1989, Vol. 115, No. 1). Journal of Environmental Engineering, ASCE, 1990, 116, 1210-1212.	0.7	0
219	The State of <i>Water Environment Research</i> . Water Environment Research, 1992, 64, 659-659.	1.3	0
220	Water Environment Protection in the 1990s. Water Environment Research, 1993, 65, 99-99.	1.3	0
221	The risk of overâ€reliance on risk assessment. Water Environment Research, 1995, 67, i.	1.3	0
222	Comment on "destruction of oocysts of Cryptosporidium parvum by sand and chlorine―by J. F. W. Parker and H. V. Smith, Water Res. 27, 729–731 (1993). Water Research, 1995, 29, 1615.	5.3	0
223	Environmental Engineering and Bioterrorism?. Journal of Environmental Engineering, ASCE, 2002, 128, 397-397.	0.7	0
224	Rebuttal to Letter of Cicmanec. Risk Analysis, 2002, 22, 1037-1037.	1.5	0
225	Numerical Investigation of the Effects of Reactor Configuration on the Efficacy of Microbial Inactivation. Proceedings of the Water Environment Federation, 2003, 2003, 73-97.	0.0	0
226	Application of a CFD Design Approach for Chemical Disinfection Processes. Proceedings of the Water Environment Federation, 2005, 2005, 413-423.	0.0	0
227	Investing in the Science of Disinfection. Water Environment Research, 2007, 79, 219-220.	1.3	0
228	Impacts of Advanced Treatment on Climate Change - Evaluating the Carbon Footprint of Uv Disinfection in Water Reuse Applications. Proceedings of the Water Environment Federation, 2009, 2009, 807-817.	0.0	0
229	The Role of Risk Analysis in Understanding Ebola. Risk Analysis, 2015, 35, 183-185.	1.5	0
230	A method for incorporating a time-dose-response model into a Giardia lamblia outbreak. Journal of Water and Health, 2017, 15, 490-504.	1.1	0
231	Incorporating Time-Dose-Response Into Shigella flexneri and Shigella sonnei Outbreak Models. Journal - American Water Works Association, 2017, 109, E548-E562.	0.2	0
232	Dose response models for Eastern US, Western US and Venezuelan equine encephalitis viruses in mice – Part I: Standard dose response model and inference of host age. Microbial Risk Analysis, 2020, 14, 100087.	1.3	0
233	Chlorination of HPC washed from water mains. Journal of Water Supply: Research and Technology - AQUA, 2000, 49, 159-168.	0.6	0