Victor N Ierusalimsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6823807/publications.pdf

Version: 2024-02-01

840776 888059 35 374 11 17 g-index citations h-index papers 35 35 35 299 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons. Biochemical and Biophysical Research Communications, 2022, 615, 102-108.	2.1	2
2	Immediate-Early Genes Detection in the CNS of Terrestrial Snail. Cellular and Molecular Neurobiology, 2020, 40, 1395-1404.	3.3	0
3	Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices. Neuroscience and Behavioral Physiology, 2019, 49, 227-232.	0.4	0
4	Identification of Immediate Early Genes in the Nervous System of Snail <i>Helix lucorum</i> . ENeuro, 2019, 6, ENEURO.0416-18.2019.	1.9	8
5	Long-living RNA in the CNS of terrestrial snail. RNA Biology, 2018, 15, 207-213.	3.1	3
6	A BK channel–mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Science Advances, 2018, 4, eaat1357.	10.3	14
7	Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 28.	3.7	10
8	Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth. Frontiers in Cellular Neuroscience, 2017, 11, 348.	3.7	8
9	Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Scientific Reports, 2016, 6, 36933.	3.3	27
10	RNA synthesis and turnover in the molluscan nervous system studied by Click-iT method. Brain Research, 2016, 1633, 139-148.	2.2	3
11	Localization of the atypical protein kinase \hat{Clq} in the Nervous System of the terrestrial snail Helix. Neurochemical Journal, 2015, 9, 254-259.	0.5	2
12	Homolog of protein kinase $\hat{M_I^q}$ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix. Frontiers in Cellular Neuroscience, 2015, 9, 222.	3.7	17
13	Type 1 metalloproteinase is selectively expressed in adult rat brain and can be rapidly up-regulated by kainate. Acta Histochemica, 2013, 115, 816-826.	1.8	5
14	Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. Journal of Neuroscience Methods, 2013, 212, 17-27.	2.5	14
15	The Serotoninergic Neuron System in the CNS of the Common Snail: Morphology, Ontogeny, Control of Behavior. Neuroscience and Behavioral Physiology, 2012, 42, 13-20.	0.4	O
16	Functional Changes in the Snail Statocyst System Elicited by Microgravity. PLoS ONE, 2011, 6, e17710.	2.5	17
17	Family of CNP neuropeptides: common morphology in various invertebrates. Cell and Tissue Research, 2011, 343, 483-497.	2.9	0
18	Two morphological sub-systems within the olfactory organs of a terrestrial snail. Brain Research, 2010, 1326, 68-74.	2.2	18

#	Article	IF	Citations
19	Cannabinoid regulation in identified synapse of terrestrial snail. European Journal of Neuroscience, 2007, 26, 3207-3214.	2.6	14
20	Neuropeptides of Drosophila related to molluscan neuropeptides: Dependence of the immunoreactivity pattern on the ontogenetic stage and functional state. Brain Research, 2007, 1152, 32-41.	2.2	6
21	Primary sensory neurons containing command neuron peptide constitute a morphologically distinct class of sensory neurons in the terrestrial snail. Cell and Tissue Research, 2007, 330, 169-177.	2.9	7
22	Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snailHelix. European Journal of Neuroscience, 2006, 23, 129-140.	2.6	28
23	Intracellular Localization of the HCS2 Gene Products in Identified Snail Neurons In Vivo and In Vitro. Cellular and Molecular Neurobiology, 2006, 26, 127-144.	3.3	3
24	Immunoreactivity to molluskan neuropeptides in the central and stomatogastric nervous systems of the earthworm, Lumbricus terrestris L Cell and Tissue Research, 2006, 325, 555-565.	2.9	9
25	Morphological basis for coordination of growth and reproduction processes in the CNS of two terrestrial snails. Experimental Brain Research, 2005, 161, 465-473.	1.5	2
26	Snail peptide expression pattern in the nervous system of the medicinal leech. Molecular Brain Research, 2005, 140, 99-105.	2.3	4
27	Helix peptide immunoreactivity pattern in the nervous system of juvenile aplysia. Molecular Brain Research, 2003, 120, 84-89.	2.3	9
28	Selective blockade of gene expression in a single identified snail neuron. Neuroscience, 2003, 119, 15-18.	2.3	2
29	A Single Serotonergic Modulatory Cell Can Mediate Reinforcement in the Withdrawal Network of the Terrestrial Snail. Neurobiology of Learning and Memory, 2001, 75, 30-50.	1.9	31
30	Participation of GABA in establishing behavioral hierarchies in the terrestrial snail. Experimental Brain Research, 2001, 141, 340-348.	1.5	10
31	Ontogenesis of the snail, Helix aspersa: embryogenesis timetable and ontogenesis of GABA-like immunoreactive neurons in the central nervous system. Journal of Neurocytology, 2001, 30, 73-91.	1.5	14
32	Postembryonic neuronogenesis in the procerebrum of the terrestrial snail, Helix lucorum L, 1998, 35, 271-276.		40
33	MIPs-containing cells in terrestrial snails: comparison of immunostaining and silver intensification. Neuroscience Research Communications, 1997, 21, 213-221.	0.2	3
34	Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons ofHelix. Invertebrate Neuroscience, 1995, 1, 41-52.	1.8	36
35	Nervous system and neural maps in gastropodHelix lucorum L Neuroscience and Behavioral Physiology, 1994, 24, 13-22.	0.4	8