Tatiana Batova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6823435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative carbonylation of methane to acetic acid over micro-mesoporous rhodium-modified zeolites. Microporous and Mesoporous Materials, 2022, 330, 111581.	4.4	9
2	Conversion of Dimethyl Ether to Light Olefins over Rhodium-Containing Zeolite Catalysts: Properties of Catalysts Depending on the Method of Rhodium Introduction. Petroleum Chemistry, 2022, 62, 425-432.	1.4	2
3	Features of the Mechanism of the Dimethyl Ether to Light Olefins Conversion over MgZSM-5/Al2O3: Study by Vibrational Spectroscopy Experimental and Theoretical Methods. Catalysis Letters, 2021, 151, 1309-1319.	2.6	6
4	Direct Low-Temperature Oxidative Conversion of Methane to Acetic Acid on Rhodium-Modified Zeolites. Petroleum Chemistry, 2021, 61, 663.	1.4	12
5	Dimethyl ether conversion to light olefins in slurry and fixedâ€bed reactors: coke nature and location on Mg/ ZSM â€5 catalyst. Journal of Chemical Technology and Biotechnology, 2021, 96, 2696-2703.	3.2	3
6	Effect of Radiation-Chemical Activation of the Rhodium*Chitosan Composite on the Zeolite Catalyst Properties in Dimethyl Ether Conversion to Light Olefins. Petroleum Chemistry, 2021, 61, 1251-1259.	1.4	0
7	Dimethyl Ether Conversion to Light Olefins on Zeolite Catalysts: Effect of MFI-Type Zeolite Nature and SiO2/Al2O3 Molar Ratio on Catalyst Efficiency. Catalysis Letters, 2020, 150, 762-770.	2.6	5
8	Zeolite Catalysts for the Synthesis of Lower Olefins from Dimethyl Ether (a Review). Petroleum Chemistry, 2020, 60, 459-470.	1.4	8
9	Effect of magnesium on the catalytic properties of polymetallic zeolite catalysts for conversion of dimethyl ether to light olefins. Microporous and Mesoporous Materials, 2020, 298, 110087.	4.4	3
10	Catalysts for Dimethyl Ether Conversion to Lower Olefins: Effect of Acidity, Postsynthesis Treatment, and Steam and Methanol Content in Feedstock. Petroleum Chemistry, 2019, 59, 427-437.	1.4	6
11	Synthesis of C2–C4 olefins from methanol as a product of methane partial oxidation over zeolite catalyst. Catalysis Communications, 2019, 129, 105744.	3.3	7
12	Effect of Ultrasonic Treatment on the Physicochemical and Catalytic Properties of Rhodium–Chitosan/HTsVM Catalysts in Dimethyl Ether Conversion to Lower Olefins. Petroleum Chemistry, 2019, 59, 1017-1022.	1.4	6
13	Stability of La-Zr-HZSM-5/Al2O3 zeolite catalysts in the conversion of dimethyl ether to lower olefins. Petroleum Chemistry, 2013, 53, 225-232.	1.4	14
14	An in situ study of dimethyl ether conversion over HZSM-5/Al2O3 zeolite catalysts by high-temperature diffuse reflectance infrared fourier transform spectroscopy. Petroleum Chemistry, 2013, 53, 316-321.	1.4	14
15	The effect of steam on the conversion of dimethyl ether to lower olefins and methanol over zeolite catalysts. Petroleum Chemistry, 2013, 53, 383-387.	1.4	17