
Catherine A Kidner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomes shed light on the evolution of <i>Begonia</i> , a megaâ€diverse genus. New Phytologist, 2022, 234, 295-310.	7.3	18
2	The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous–Paleogene (K–Pg) Mass Extinction Event. Systematic Biology, 2021, 70, 508-526.	5.6	83
3	Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family. Scientific Reports, 2021, 11, 17773.	3.3	6
4	Largeâ€scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a nearâ€simultaneous evolutionary origin of all six subfamilies. New Phytologist, 2020, 225, 1355-1369.	7.3	94
5	Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation. American Journal of Botany, 2020, 107, 1710-1735.	1.7	51
6	Macroevolutionary patterns in overexpression of tyrosine: An antiâ€herbivore defence in a speciose tropical tree genus, <i>Inga</i> (Fabaceae). Journal of Ecology, 2019, 107, 1620-1632.	4.0	21
7	The Limits of Hyb-Seq for Herbarium Specimens: Impact of Preservation Techniques. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	45
8	Ultrastructure and development of non-contiguous stomatal clusters and helicocytic patterning in Begonia. Annals of Botany, 2018, 122, 767-776.	2.9	7
9	Chemocoding as an identification tool where morphological―and <scp>DNA</scp> â€based methods fall short: <i>Inga</i> as a case study. New Phytologist, 2018, 218, 847-858.	7.3	25
10	Transcriptome mining for phylogenetic markers in a recently radiated genus of tropical plants (Renealmia L.f., Zingiberaceae). Molecular Phylogenetics and Evolution, 2018, 119, 13-24.	2.7	13
11	Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae). Frontiers in Plant Science, 2018, 9, 1237.	3.6	19
12	Retrieval of hundreds of nuclear loci from herbarium specimens. Taxon, 2016, 65, 1081-1092.	0.7	143
13	First steps in studying the origins of secondary woodiness in <i>Begonia</i> (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics. Biological Journal of the Linnean Society, 2016, 117, 121-138.	1.6	30
14	Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics. PLoS ONE, 2016, 11, e0153248.	2.5	12
15	Maintenance of species boundaries in a <scp>N</scp> eotropical radiation of <i><scp>B</scp>egonia</i> . Molecular Ecology, 2015, 24, 4982-4993.	3.9	29
16	Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Science, 2015, 6, 710.	3.6	147
17	The evolution of sex ratio differences and inflorescence architectures in <i>Begonia</i> (Begoniaceae). American Journal of Botany, 2014, 101, 308-317.	1.7	1
18	Development and Characterization of Microsatellite Markers for Central American Begonia sect. Gireoudia (Begoniaceae). Applications in Plant Sciences, 2013, 1, 1200499.	2.1	7

CATHERINE A KIDNER

#	Article	IF	CITATIONS
19	Population history and seed dispersal in widespread Central American <i>Begonia</i> species (Begoniaceae) inferred from plastome-derived microsatellite markers. Botanical Journal of the Linnean Society, 2013, 171, 260-276.	1.6	40
20	Next–generation sequencing and systematics: What can a billion base pairs of DNA sequence data do for you?. Taxon, 2011, 60, 1552-1566.	0.7	64
21	A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Development Genes and Evolution, 2010, 220, 25-40.	0.9	22
22	Signaling Sides. Current Topics in Developmental Biology, 2010, 91, 141-168.	2.2	49
23	The many roles of small RNAs in leaf development. Journal of Genetics and Genomics, 2010, 37, 13-21.	3.9	66
24	Mixing and matching pathways in leaf polarity. Current Opinion in Plant Biology, 2007, 10, 13-20.	7.1	82
25	<i>In Situ</i> Hybridization as a Tool to Study the Role of MicroRNAs in Plant Development. , 2006, 342, 159-180.		25
26	The developmental role of microRNA in plants. Current Opinion in Plant Biology, 2005, 8, 38-44.	7.1	350
27	The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Developmental Biology, 2005, 280, 504-517.	2.0	148
28	Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428, 81-84.	27.8	486
29	Macro effects of microRNAs in plants. Trends in Genetics, 2003, 19, 13-16.	6.7	53
30	Plant stem cells: divergent pathways and common themes in shoots and roots. Current Opinion in Genetics and Development, 2003, 13, 551-557.	3.3	46
31	Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi. Science, 2002, 297, 1833-1837.	12.6	1,889
32	Developmental genetics of the angiosperm leaf. Advances in Botanical Research, 2002, 38, 191-234.	1.1	12
33	Initiating interference. Trends in Genetics, 2001, 17, 129.	6.7	0
34	Development of leaf shape. Current Opinion in Plant Biology, 2001, 4, 38-43.	7.1	76
35	Untwisting RNAs in plant development. Trends in Genetics, 2000, 16, 68.	6.7	0
36	Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta, 2000, 211, 191-199.	3.2	145

#	Article	IF	CITATIONS
37	YABBY genes in plants. Trends in Genetics, 1999, 15, 260.	6.7	1