Jinwoong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6823173/publications.pdf Version: 2024-02-01

LINWOONG SONG

#	Article	IF	CITATIONS
1	The nature of technology and engineering (NOTE) as perceived by science and technology teachers in Korea. Research in Science and Technological Education, 2023, 41, 596-613.	2.5	2
2	Looking back at "our science―and "our history― an exploration of Korean preservice science teachers' encounters with East Asian history of science. Cultural Studies of Science Education, 2022, 17, 355-381.	1.3	3
3	The assessment of science classroom creativity: scale development. International Journal of Science Education, 2022, 44, 1356-1377.	1.9	2
4	Why People Trust Something Other than Science. Science and Education, 2021, 30, 1387-1419.	2.7	8
5	The Pursuit of Understanding Science Classroom Culture in Korea and East Asia. , 2021, , 25-44.		Ο
6	The Factors and Features of Museum Fatigue in Science Centres Felt by Korean Students. Research in Science Education, 2020, 50, 419-436.	2.3	5
7	How Is Intuitive Thinking Shared and Elaborated During Small-Group Problem-Solving Activities on Thermal Phenomena?. Research in Science Education, 2020, 50, 2363-2390.	2.3	5
8	A componential model of Science Classroom Creativity (SCC) for understanding collective creativity in the science classroom. Thinking Skills and Creativity, 2020, 37, 100698.	3.5	6
9	Exploring How Students Construct Collaborative Thought Experiments During Physics Problem-Solving Activities. Science and Education, 2020, 29, 617-645.	2.7	10
10	Representations of Nature of Science in New Korean Science Textbooks: The Case of â€~Scientific Inquiry and Experimentation'. , 2020, , 19-35.		11
11	Eliciting students' understanding of nature of science with text-based tasks: insights from new Korean high school textbooks. International Journal of Science Education, 2020, 42, 426-450.	1.9	29
12	Factors Triggering Thought Experiments in Small Group Physics Problem-solving Activities. New Physics: Sae Mulli, 2020, 70, 466-480.	0.1	4
13	Experimental science: Joseph Priestley's influence in the infrastructure of the seventeenth-century science education. Educational Philosophy and Theory, 2019, 51, 599-607.	1.8	Ο
14	When Modern Physics Meets Nature of Science. Science and Education, 2019, 28, 1055-1083.	2.7	25
15	Comprehensive Comparison of NGSS and KSES and Analysis of Physics Content Elements of Performance Expectations Based on the TIMSS Science Framework. New Physics: Sae Mulli, 2019, 69, 916-931.	0.1	2
16	Between realism and constructivism. , 2019, , 228-247.		6
17	Goethe's Conception of "Experiment as Mediator―and Implications for Practical Work in School Science. Science and Education, 2018, 27, 39-61.	2.7	10
18	The Meanings of Physics Equations and Physics Education. Journal of the Korean Physical Society, 2018, 73, 145-151.	0.7	13

JINWOONG SONG

#	Article	IF	CITATIONS
19	Unintended knowledge learnt in primary science practical lessons. International Journal of Science Education, 2016, 38, 2528-2549.	1.9	6
20	A case study on the formation and sharing process of science classroom norms. International Journal of Science Education, 2016, 38, 747-766.	1.9	6
21	Unintended Learning in Primary School Practical Science Lessons from Polanyi's Perspective of Intellectual Passion. Science and Education, 2016, 25, 3-20.	2.7	5
22	A Case Study on the Features of Classroom Norms Formed in Inquiry Activities of Elementary Science Classes. Journal of the Korean Association for Science Education, 2015, 35, 303-312.	0.1	4
23	Why Everyday Experience? Interpreting Primary Students' Science Discourse from the Perspective of John Dewey. Science and Education, 2014, 23, 1031-1049.	2.7	10
24	Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory. Science and Education, 2014, 23, 1011-1030.	2.7	20
25	Trends in HPS/NOS Research in Korean Science Education. , 2014, , 2177-2215.		5
26	A New Method of Understanding Learning in Science Centers: Context Diagrams of Learning Experiences. Visitor Studies, 2013, 16, 181-200.	0.9	8
27	THE DYNAMICS OF LEARNING SCIENCE IN EVERYDAY CONTEXTS: A CASE STUDY OF EVERYDAY SCIENCE CLASS IN KOREA. International Journal of Science and Mathematics Education, 2012, 10, 71-97.	2.5	12
28	Analysis of Textbooks' Expressions about Wave-particle Duality. New Physics: Sae Mulli, 2011, 61, 479-488.	0.1	1
29	The Effects of Dichotomous Attitudes toward Science on Interest and Conceptual Understanding in Physics. International Journal of Science Education, 2009, 31, 2385-2406.	1.9	11
30	The Features of Peer Argumentation in Middle School Students' Scientific Inquiry. Research in Science Education, 2006, 36, 211-233.	2.3	47
31	EFFECTS OF ESTIMATION ACTIVITIES ON PHYSICS PROBLEM SOLVING PROCEDURES. , 2004, , .		0
32	How Korean students see scientists: the images of the scientist. International Journal of Science Education, 1999, 21, 957-977.	1.9	114
33	Exploring the parallelism between change in students' conceptions and historical change in the concept of inertia. Research in Science Education, 1997, 27, 87-100.	2.3	6
34	Students' preferences for different contexts for learning science. Research in Science Education, 1996, 26, 341-352.	2.3	16
35	The effects of concept requirements and task contexts on pupils' performance in control of variables. International Journal of Science Education, 1992, 14, 83-93.	1.9	22
36	The effects of task contexts on pupils' performance in science process skills. International Journal of Science Education, 1991, 13, 49-58.	1.9	21