Johannes Glaab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6822954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2020 UV emitter roadmap. Journal Physics D: Applied Physics, 2020, 53, 503001.	1.3	289
2	UVâ€B Induced Secondary Plant Metabolites. Optik & Photonik, 2014, 9, 34-37.	0.3	84
3	Defect-Related Degradation of AlGaN-Based UV-B LEDs. IEEE Transactions on Electron Devices, 2017, 64, 200-205.	1.6	62
4	Degradation effects of the active region in UV-C light-emitting diodes. Journal of Applied Physics, 2018, 123, .	1.1	55
5	Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates. Applied Physics Letters, 2020, 117, .	1.5	50
6	Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. Journal of Applied Physics, 2015, 118, .	1.1	47
7	Current-induced degradation and lifetime prediction of 310  nm ultraviolet light-emitting diodes. Photonics Research, 2019, 7, B36.	3.4	46
8	Degradation of (In)AlGaN-Based UVB LEDs and Migration of Hydrogen. IEEE Photonics Technology Letters, 2019, 31, 529-532.	1.3	43
9	MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs. Photonics Research, 2019, 7, B7.	3.4	42
10	High-power UV-B LEDs with long lifetime. Proceedings of SPIE, 2015, , .	0.8	41
11	Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs. Scientific Reports, 2021, 11, 14647.	1.6	37
12	Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photonics Research, 2017, 5, A44.	3.4	36
13	Reliability of UVC LEDs fabricated on AlN/sapphire templates with different threading dislocation densities. Applied Physics Letters, 2020, 117, .	1.5	34
14	High-Current Stress of UV-B (In)AlGaN-Based LEDs: Defect-Generation and Diffusion Processes. IEEE Transactions on Electron Devices, 2019, 66, 3387-3392.	1.6	24
15	Localization of current-induced degradation effects in (InAlGa)N-based UV-B LEDs. Journal of Applied Physics, 2018, 124, .	1.1	22
16	Degradation behavior of AlGaN-based 233 nm deep-ultraviolet light emitting diodes. Semiconductor Science and Technology, 2018, 33, 095017.	1.0	18
17	Impact of operation parameters on the degradation of 233 nm AlGaN-based far-UVC LEDs. Journal of Applied Physics, 2022, 131, .	1.1	17
18	High power UVB light emitting diodes with optimized n-AlGaN contact layers. Japanese Journal of Applied Physics, 2019, 58, SCCC02.	0.8	15

JOHANNES GLAAB

#	Article	IF	CITATIONS
19	Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232  nm. Photonics Research, 2021, 9, 1117.	3.4	13
20	Effect of Cl2 plasma treatment and annealing on vanadium based metal contacts to Si-doped Al0.75Ga0.25N. Journal of Applied Physics, 2017, 122, .	1.1	11
21	In-situ spectroscopic analysis of the recombination kinetics in UVB LEDs during their operation. Applied Physics Letters, 2020, 117, 121104.	1.5	9
22	Role of substrate quality on the performance of semipolar (112Â ⁻ 2) InGaN light-emitting diodes. Journal of Applied Physics, 2016, 120, .	1.1	8
23	Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model. Food Bioscience, 2021, 43, 101327.	2.0	8
24	Impact of Insulators and Their Deposition Method on the Reliability of AlInGaN-Based UVB LEDs. IEEE Photonics Technology Letters, 2020, 32, 1007-1010.	1.3	7
25	Design considerations for AlGaN-based UV LEDs emitting near 235 nm with uniform emission pattern. Semiconductor Science and Technology, 2017, 32, 045019.	1.0	4
26	Comparison of Ultraviolet B Lightâ€Emitting Diodes with Single or Triple Quantum Wells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100100.	0.8	3
27	Influence of the hydrogen level in (InAlGa)N-based laser diodes on the stability of the device's operating voltage. Journal Physics D: Applied Physics, 2021, 54, 135103.	1.3	2
28	Advances towards deep-UV light emitting diode technologies. , 2021, , .		2
29	UV LED reliability: degradation mechanisms and challenges. , 2022, , .		2