Markus M Rinschen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6822639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells. Journal of Proteomics, 2022, 252, 104424.	1.2	1
2	Super-Resolution Imaging of the Filtration Barrier Suggests a Role for Podocin R229Q in Genetic Predisposition to Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 138-154.	3.0	7
3	The calcium-sensing receptor stabilizes podocyte function in proteinuric humans and mice. Kidney International, 2022, 101, 1186-1199.	2.6	6
4	Consensus draft of the native mouse podocyte-ome. American Journal of Physiology - Renal Physiology, 2022, 323, F182-F197.	1.3	6
5	Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nature Communications, 2022, 13, .	5.8	18
6	The tissue proteome in the multi-omic landscape of kidney disease. Nature Reviews Nephrology, 2021, 17, 205-219.	4.1	31
7	MANTI: Automated Annotation of Protein N-Termini for Rapid Interpretation of N-Terminome Data Sets. Analytical Chemistry, 2021, 93, 5596-5605.	3.2	9
8	Proteolysis and inflammation of the kidney glomerulus. Cell and Tissue Research, 2021, 385, 489-500.	1.5	4
9	A stressed barrier left behind: stochastic podocyte ablation triggers secondary injury. American Journal of Physiology - Renal Physiology, 2021, 320, F866-F869.	1.3	2
10	Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice. Journal of the American Society of Nephrology: JASN, 2021, 32, 2175-2193.	3.0	16
11	Maintaining proteostasis under mechanical stress. EMBO Reports, 2021, 22, e52507.	2.0	28
12	Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis. Kidney International, 2021, 100, 850-869.	2.6	16
13	Cognitive analysis of metabolomics data for systems biology. Nature Protocols, 2021, 16, 1376-1418.	5.5	13
14	Viewing Cortical Collecting Duct Function Through Phenotype-guided Single-Tubule Proteomics. Function, 2020, 1, zqaa007.	1.1	2
15	The proteomic landscape of small urinary extracellular vesicles during kidney transplantation. Journal of Extracellular Vesicles, 2020, 10, e12026.	5.5	30
16	A molecular mechanism explaining albuminuria in kidney disease. Nature Metabolism, 2020, 2, 461-474.	5.1	99
17	The ubiquitin-conjugating enzyme UBE2K determines neurogenic potential through histone H3 in human embryonic stem cells. Communications Biology, 2020, 3, 262.	2.0	18
18	Cloudâ€based archived metabolomics data: A resource for inâ€source fragmentation/annotation, metaâ€analysis and systems biology. Analytical Science Advances, 2020, 1, 70-80.	1.2	3

MARKUS M RINSCHEN

#	Article	IF	CITATIONS
19	Injured Podocytes Are Sensitized to Angiotensin II–Induced Calcium Signaling. Journal of the American Society of Nephrology: JASN, 2020, 31, 532-542.	3.0	23
20	Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification. Analytical Chemistry, 2020, 92, 6051-6059.	3.2	42
21	PKAâ€independent vasopressin signaling in renal collecting duct. FASEB Journal, 2020, 34, 6129-6146.	0.2	24
22	Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 544-559.	3.0	23
23	An integrative approach to cisplatin chronic toxicities in mice reveals importance of organic cation-transporter-dependent protein networks for renoprotection. Archives of Toxicology, 2019, 93, 2835-2848.	1.9	16
24	Single glomerular proteomics: A novel tool for translational glomerular cell biology. Methods in Cell Biology, 2019, 154, 1-14.	0.5	6
25	A knowledge-guided kidney cell census—reconciling bulk omics with cellular heterogeneity?. Kidney International, 2019, 95, 733-735.	2.6	1
26	Big science and big data in nephrology. Kidney International, 2019, 95, 1326-1337.	2.6	56
27	Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7963-7972.	3.3	36
28	The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2019, 30, 564-576.	3.0	16
29	Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology, 2019, 20, 353-367.	16.1	602
30	The authors reply. Kidney International, 2019, 96, 1422-1423.	2.6	0
31	Metabolic rewiring of the hypertensive kidney. Science Signaling, 2019, 12, .	1.6	40
32	Bevacizumab-associated glomerular microangiopathy. Modern Pathology, 2019, 32, 684-700.	2.9	37
33	The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney International, 2019, 95, 333-349.	2.6	55
34	Quantification of molecular heterogeneity in kidney tissue by targeted proteomics. Journal of Proteomics, 2019, 193, 85-92.	1.2	15
35	Autosomal Tubulointerstitial Kidney Disease—MUC1 Type: Differential Proteomics Suggests that Mutated MUC1 (insC) Affects Vesicular Transport in Renal Epithelial Cells. Proteomics, 2018, 18, e1700456.	1.3	13
36	Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney International, 2018, 93, 1308-1319.	2.6	49

MARKUS M RINSCHEN

#	Article	IF	CITATIONS
37	Prolineâ€dependent and basophilic kinases phosphorylate human TRPC6 at serine 14 to control channel activity through increased membrane expression. FASEB Journal, 2018, 32, 208-219.	0.2	6
38	From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiological Reviews, 2018, 98, 2571-2606.	13.1	27
39	The podocyte protease web: uncovering the gatekeepers of glomerular disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1812-F1816.	1.3	17
40	A Multi-layered Quantitative InÂVivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes. Cell Reports, 2018, 23, 2495-2508.	2.9	81
41	A Single-Cell Transcriptome Atlas of the Mouse Glomerulus. Journal of the American Society of Nephrology: JASN, 2018, 29, 2060-2068.	3.0	137
42	Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Experimental and Molecular Medicine, 2018, 50, 1-17.	3.2	22
43	Urine-derived cells: a promising diagnostic tool in Fabry disease patients. Scientific Reports, 2018, 8, 11042.	1.6	22
44	Protein halfâ€life determines expression of proteostatic networks in podocyte differentiation. FASEB Journal, 2018, 32, 4696-4713.	0.2	15
45	Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations. Human Molecular Genetics, 2018, 27, 4117-4134.	1.4	21
46	mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2017, 28, 230-241.	3.0	79
47	Construction of a viral T2A-peptide based knock-in mouse model for enhanced Cre recombinase activity and fluorescent labeling of podocytes. Kidney International, 2017, 91, 1510-1517.	2.6	9
48	YAP-mediated mechanotransduction determines the podocyte's response to damage. Science Signaling, 2017, 10, .	1.6	61
49	N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton. Journal of the American Society of Nephrology: JASN, 2017, 28, 2867-2878.	3.0	41
50	The ciliary membraneâ€associated proteome reveals actinâ€binding proteins as key components of cilia. EMBO Reports, 2017, 18, 1521-1535.	2.0	119
51	Quantitative deep mapping of the cultured podocyte proteome uncovers shifts in proteostatic mechanisms during differentiation. American Journal of Physiology - Cell Physiology, 2016, 311, C404-C417.	2.1	31
52	Cysteine S-Clutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ). Journal of Biological Chemistry, 2016, 291, 11596-11607.	1.6	28
53	Polyhydramnios, Transient Antenatal Bartter's Syndrome, and <i>MAGED2</i> Mutations. New England Journal of Medicine, 2016, 374, 1853-1863.	13.9	148
54	The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. Human Molecular Genetics, 2016, 25, 1328-1344.	1.4	45

MARKUS M RINSCHEN

#	Article	IF	CITATIONS
55	Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression. Cell Cycle, 2016, 15, 1034-1045.	1.3	9
56	Three-layered proteomic characterization of a novel <i>ACTN4</i> mutation unravels its pathogenic potential in FSGS. Human Molecular Genetics, 2016, 25, 1152-1164.	1.4	36
57	A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight, 2016, 1, .	2.3	69
58	Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging, 2016, 8, 441-454.	1.4	46
59	Proteomic analysis of the kidney filtration barrier—Problems and perspectives. Proteomics - Clinical Applications, 2015, 9, 1053-1068.	0.8	19
60	(Sugar-) Sweet Biomarkers? Clinical Proteomics Enters Sepsis Research*. Critical Care Medicine, 2015, 43, 2245-2246.	0.4	1
61	<i>>Water transport running deep</i> . Focus on "Deep proteomic profiling of vasopressin-sensitive collecting duct cells― American Journal of Physiology - Cell Physiology, 2015, 309, C783-C784.	2.1	2
62	WT1 targets <i>Gas1</i> to maintain nephron progenitor cells by modulating FGF signals. Development (Cambridge), 2015, 142, 1254-1266.	1.2	42
63	Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture. Proteomics, 2015, 15, 1326-1331.	1.3	21
64	Casein Kinase 1 α Phosphorylates the Wnt Regulator Jade-1 and Modulates Its Activity. Journal of Biological Chemistry, 2014, 289, 26344-26356.	1.6	19
65	The Cleaved Cytoplasmic Tail of Polycystin-1 Regulates Src-Dependent STAT3 Activation. Journal of the American Society of Nephrology: JASN, 2014, 25, 1737-1748.	3.0	61
66	Phosphoproteomic Analysis Reveals Regulatory Mechanisms at the Kidney Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2014, 25, 1509-1522.	3.0	40
67	Label-free quantitative proteomic analysis of the YAP/TAZ interactome. American Journal of Physiology - Cell Physiology, 2014, 306, C805-C818.	2.1	59
68	Vasopressin-2 Receptor Signaling and Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 1140-1147.	3.0	33
69	A Disease-causing Mutation Illuminates the Protein Membrane Topology of the Kidney-expressed Prohibitin Homology (PHB) Domain Protein Podocin. Journal of Biological Chemistry, 2014, 289, 11262-11271.	1.6	16
70	Characterization of a short isoform of the kidney protein podocin in human kidney. BMC Nephrology, 2013, 14, 102.	0.8	18
71	Loss of the <scp>B</scp> irt– <scp>H</scp> ogg– <scp>D</scp> ubé gene product folliculin induces longevity in a hypoxiaâ€inducible factor–dependent manner. Aging Cell, 2013, 12, 593-60.	3.0	12
72	Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2012, 23, 1008-1018.	3.0	50

#	Article	IF	CITATIONS
73	Different effects of CsA and FK506 on aquaporin-2 abundance in rat primary cultured collecting duct cells. Pflugers Archiv European Journal of Physiology, 2011, 462, 611-622.	1.3	13
74	Cyclosporin-A Induced Toxicity in Rat Renal Collecting Duct Cells: Interference with Enhanced Hypertonicity Induced Apoptosis. Cellular Physiology and Biochemistry, 2010, 26, 887-900.	1.1	11
75	Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15653-15658.	3.3	107
76	Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor–dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3882-3887.	3.3	155
77	Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters. American Journal of Physiology - Renal Physiology, 2010, 299, F559-F567.	1.3	28
78	Systems-level analysis of cell-specific <i>AQP2</i> gene expression in renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2441-2446.	3.3	117