Igor I Pronin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6822616/publications.pdf Version: 2024-02-01

ICOP | PRONIN

#	Article	IF	CITATIONS
1	Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. Journal of Physical Chemistry C, 2016, 120, 28261-28269.	3.1	85
2	Absence of oxide formation at the Fe/MgO(001) interface. Surface Science, 2005, 583, 191-198.	1.9	48
3	Initial stages of iron silicide formation on the Si(100)2×1 surface. Surface Science, 2007, 601, 5069-5076.	1.9	41
4	Magnetic ordering of the Fe/Si interface and its initial formation. Journal of Applied Physics, 2008, 104, 104914.	2.5	40
5	Incident beam diffraction effects in Auger electron emission from crystal surfaces. Surface Science, 1990, 235, 156-168.	1.9	27
6	Photoemission study of cobalt interaction with the oxidized Si(100)2×1 surface. Surface Science, 2006, 600, 2449-2456.	1.9	22
7	Photoelectron spectroscopy of atomic core levels on the silicon surface: A review. Technical Physics, 2004, 49, 1249-1279.	0.7	20
8	Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering. Applied Surface Science, 2017, 392, 715-722.	6.1	20
9	Kikuchi patterns of Mo{100} and primary electron localization. Surface Science, 1984, 139, 443-452.	1.9	18
10	Interaction of cobalt with the Si(100)2×1 surface studied by photoelectron spectroscopy. Surface Science, 2005, 578, 174-182.	1.9	18
11	Imaging of near-surface atomic structure by forward-focused backscattered electrons. Progress in Surface Science, 1998, 59, 53-65.	8.3	16
12	Initial stages of the growth and magnetic properties of cobalt films on the Si(100)2 × 1 surface. Physics of the Solid State, 2011, 53, 616-621.	0.6	15
13	In-situ intercalation of VSe2(0001) with K: direct observation of near-surface structure transformation by incoherent medium-energy electron diffraction. Surface Science, 2000, 461, 137-145.	1.9	11
14	The Co/Si(111) interface formation: a temperature dependent reaction. Surface Science, 2002, 511, 303-311.	1.9	11
15	Photoelectron Si 2p spectra of ultrathin CoSi2 layers formed on Si(100)2×1. Physics of the Solid State, 2003, 45, 1596-1599.	0.6	11
16	Intercalation of Iron Atoms under Graphene Formed on Silicon Carbide. Physics of the Solid State, 2018, 60, 1439-1446.	0.6	11
17	Formation of ultrathin magnetic cobalt films on the Si(111)7 × 7 surface. Technical Physics, 2011, 56, 865-868.	0.7	10
18	Formation and magnetic properties of the silicon-cobalt interface. Physics of the Solid State, 2013, 55, 437-442.	0.6	10

Igor I Pronin

#	Article	IF	CITATIONS
19	Cobalt Intercalation of Graphene on Silicon Carbide. Physics of the Solid State, 2019, 61, 1316-1326.	0.6	10
20	Silicon surface reconstruction lost upon cobalt adsorption. Technical Physics Letters, 2003, 29, 496-499.	0.7	9
21	Binding energies of Si 2p and Co 3p electrons in cobalt silicides. Technical Physics Letters, 2011, 37, 1124-1126.	0.7	9
22	Formation of graphene-capped cobalt silicides. Applied Surface Science, 2019, 470, 840-845.	6.1	9
23	Modification of the electronic structure of graphene by intercalation of iron and silicon atoms. Physics of the Solid State, 2017, 59, 2063-2069.	0.6	8
24	Imaging of the structure of ultra-thin cobalt silicide films by inelastically backscattered electrons. Applied Surface Science, 2001, 175-176, 83-89.	6.1	7
25	Initial stages of cobalt film growth on MgO(001) surface. Technical Physics Letters, 2005, 31, 494-497.	0.7	7
26	Reactive epitaxy of cobalt disilicide on Si(111). Physics of the Solid State, 2001, 43, 569-573.	0.6	6
27	Interaction of iron atoms with the Si(100)-2 $ ilde{A}$ — 1 surface. Technical Physics, 2005, 50, 1212-1216.	0.7	6
28	Magnetic-dichroism study of iron silicides formed atÂtheÂFe/Si(100) interface. Applied Physics A: Materials Science and Processing, 2009, 94, 467-471.	2.3	6
29	Dependence of the atomic structure and surface relief of platinum foils on the annealing and rolling conditions. Physics of the Solid State, 2010, 52, 1526-1530.	0.6	6
30	Formation of the Co/Si(110) interface: Phase composition and magnetic properties. Technical Physics, 2013, 58, 852-857.	0.7	6
31	Effect of focusing of primary electrons on their reflection from a crystal and on the associated Auger emission. Technical Physics, 1997, 42, 961-966.	0.7	5
32	Kikuchi-band formation in medium-energy electron-diffraction patterns. Physics of the Solid State, 1999, 41, 369-374.	0.6	5
33	Formation of ultrathin iron silicide layers on the single-crystal silicon surface. Physics of the Solid State, 2006, 48, 2016-2020.	0.6	5
34	Initial growth stages of manganese films on the Si(100)2 × 1 surface. Physics of the Solid State, 2014, 56, 380-384.	0.6	5
35	Intercalation Synthesis of Cobalt Silicides under Graphene Grown on Silicon Carbide. Physics of the Solid State, 2020, 62, 519-528.	0.6	5
36	Reversible intercalation of TiS2 with potassium imaged by backscattered electrons. Surface Science, 2001, 482-485, 1419-1424.	1.9	4

IGOR I PRONIN

#	Article	IF	CITATIONS
37	Formation of interfacial iron silicides on the oxidized silicon surface during solid-phase epitaxy. Technical Physics, 2007, 52, 1586-1591.	0.7	4
38	Processes of silicide formation in the Fe/Si(111)7 $ ilde{A}$ — 7 system. Physics of the Solid State, 2008, 50, 1579.	0.6	4
39	Interaction of cobalt atoms with an oxidized Si(111)7 × 7 surface. Technical Physics, 2009, 54, 753-757.	0.7	4
40	Binding energy of silicon 2p electrons in iron silicides. Technical Physics, 2010, 55, 588-590.	0.7	4
41	Interaction of Pd electron states with adsorbed hydrogen. Surface Science, 2013, 608, 165-172.	1.9	4
42	Medium-energy Kikuchi patterns from YBa2Cu3Ox(001). Surface Science, 1995, 331-333, 1446-1452.	1.9	3
43	Initial stages in the intercalation of 1T-TiS2(0001) single crystals by potassium. Physics of the Solid State, 2001, 43, 1788-1793.	0.6	3
44	The interaction of cobalt with oxidized silicon surface. Technical Physics Letters, 2004, 30, 850-853.	0.7	3
45	Transformation of graphite islets on the surface of recrystallized platinum foil under the action of mechanical loading. Technical Physics, 2007, 52, 1098-1100.	0.7	3
46	Magnetic linear dichroism in photoemission from an ultrathin iron silicide film. Physics of the Solid State, 2008, 50, 553-556.	0.6	3
47	Formation of Heusler alloy Co2FeSi thin films on the surface of single-crystal silicon. Technical Physics, 2011, 56, 1670-1674.	0.7	3
48	Intercalation synthesis of cobalt silicide under a graphene layer. Physics of the Solid State, 2016, 58, 2135-2140.	0.6	3
49	Ultrathin epitaxial cobalt films formed under graphene. Physics of the Solid State, 2017, 59, 2053-2057.	0.6	3
50	Magnetic Anisotropy of Graphene-Coated Thin Iron Films. Physics of the Solid State, 2019, 61, 1310-1315.	0.6	3
51	Visualization of the reconstruction of a silver film on silicon. Technical Physics Letters, 1997, 23, 142-143.	0.7	2
52	Focusing of electrons reflected from a crystal with loss of energy. Technical Physics, 1998, 43, 730-734.	0.7	2
53	Interaction of Cobalt Atoms with an Oxidized Si(100)2 × 1 Surface. Physics of the Solid State, 2005, 47, 1980.	0.6	2
54	Formation of ultrathin iron magnetic films on the silicon vicinal surface. Physics of the Solid State, 2011, 53, 606-611.	0.6	2

Igor I Pronin

#	Article	IF	CITATIONS
55	Initial stages of silicon-iron interface formation. Technical Physics Letters, 2013, 39, 360-363.	0.7	2
56	Silicide formation in bilayer ultrathin iron and cobalt films on silicon. Technical Physics, 2014, 59, 1492-1498.	0.7	2
57	Solid-phase synthesis of manganese silicides on the Si(100)2 × 1 surface. Physics of the Solid State, 2014, 56, 812-815.	0.6	2
58	Study on the Electronic Structure of the Graphene–Iron–Nickel Interface. Journal of Surface Investigation, 2018, 12, 1210-1214.	0.5	2
59	Electronic and Magnetic Structure of Intercalated Graphene Films. Physics of the Solid State, 2018, 60, 1214-1218.	0.6	2
60	Role of the electron forward-focusing effect in the formation of Kikuchi patterns of single-crystal silicon. Physics of the Solid State, 1997, 39, 666-670.	0.6	1
61	Device for visualizing the atomic structure of surface layers based on an electron focusing effect. Technical Physics, 1998, 43, 1475-1478.	0.7	1
62	Crystal structure of silver clusters formed on a Si(100)â^'2×1 surface. Technical Physics Letters, 1998, 24, 268-269.	0.7	1
63	Reactive epitaxy of cobalt disilicide on Si(100). Physics of the Solid State, 2002, 44, 1176-1180.	0.6	1
64	Interaction of iron atoms with the oxidized silicon surface. Technical Physics, 2006, 51, 1243-1246.	0.7	1
65	Interaction of iron atoms with the silicon surface coated with a native oxide layer. Technical Physics, 2009, 54, 1210-1214.	0.7	1
66	Effect of carbon doping on magnetic properties of Mn/Si interface. Journal of Physics: Conference Series, 2015, 643, 012096.	0.4	1
67	Formation of manganese silicides on the Si(111)7 × 7 surface. Physics of the Solid State, 2015, 57, 624-630.	0.6	1
68	Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer. Applied Surface Science, 2016, 365, 88-92.	6.1	1
69	Effect of iron intercalation on graphene/SiC electronic structure. Journal of Physics: Conference Series, 2019, 1400, 055047.	0.4	1
70	Formation of Iron Silicides Under Graphene Grown on the Silicon Carbide Surface. Physics of the Solid State, 2020, 62, 1944-1948.	0.6	1
71	Electron spectroscopy study of Si/Bi2Sr2CaCu2O8+x(001) interface formation. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 439-444.	1.7	0
72	Electron-stimulated effects in HTS singlecrystalline Bi2Sr2CaCu2O8+x. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 479-484.	1.7	0

IGOR I PRONIN

#	Article	IF	CITATIONS
73	Atomic structure of silver clusters on silicon. Technical Physics, 1997, 42, 1429-1432.	0.7	0
74	Diffraction pattern of electrons scattered quasi-elastically by adsorbed fullerenes. Technical Physics Letters, 1997, 23, 134-136.	0.7	0
75	Electron focusing in backscattering from single-crystal Si(100). Physics of the Solid State, 1998, 40, 1241-1245.	0.6	Ο
76	Visualization of the atomic structure of the subsurface region of a solid. Technical Physics, 1999, 44, 1063-1065.	0.7	0
77	Focusing of electrons reflected from layered crystal. Physics of the Solid State, 2000, 42, 554-560.	0.6	Ο
78	Application of synchrotron radiation to investigation of the mechanism of increase in the yield of alkali metal ions in electron-stimulated desorption. Physics of the Solid State, 2006, 48, 792-800.	0.6	0
79	Ferromagnetic alignment of iron nanostructures on the silicon surface. Physics of the Solid State, 2010, 52, 404-408.	0.6	0
80	Specific features of photoelectron emission from palladium clusters on graphite. Physics of the Solid State, 2013, 55, 1510-1518.	0.6	0
81	Formation of ultrathin ferromagnetic layers of Fe <inf>3</inf> Si and Co <inf>3</inf> Si on silicon studied by photoelectron spectroscopy. , 2014, , .		0
82	Photoelectron spectroscopy of iron, cobalt and manganese silicides. , 2014, , .		0
83	Magnetic linear dichroism of photoemission from ultrathin manganese films on silicon. Physics of the Solid State, 2015, 57, 1895-1898.	0.6	0
84	Reduction of the graphene oxide films by soft UV irradiation. , 2016, , .		0
85	Graphene modification via cobalt and silicon intercalation. Journal of Physics: Conference Series, 2017, 917, 092006.	0.4	0
86	10.1007/s11451-008-3026-4. , 2010, 50, 553.		0
87	Intercalation of graphene formed on silicon carbide with iron, cobalt and silicon atoms. Journal of Physics: Conference Series, 2020, 1697, 012105.	0.4	0
88	Electronic Structure of Graphene on Silicon Carbide Intercalated with Silicon and Cobalt Atoms. Physics of the Solid State, 2021, 63, 819-824.	0.6	0