
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6822335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Characterization of Additive Manufactured Polymeric Scaffolds for Tissue Engineering. , 2022, , 99-148.		3
2	Development and Characterization of Highly Stable Silver NanoParticles as Novel Potential Antimicrobial Agents for Wound Healing Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2161.	1.8	18
3	Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2022, 23, 3895.	1.8	9
4	Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. International Journal of Molecular Sciences, 2022, 23, 3265.	1.8	11
5	Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters. Marine Pollution Bulletin, 2022, 178, 113601.	2.3	3
6	An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials, 2021, 272, 120773.	5.7	27
7	Ecotoxicological screening of UV-filters using a battery of marine bioassays. Environmental Pollution, 2021, 290, 118011.	3.7	13
8	Computer-Aided Wet-Spinning. Methods in Molecular Biology, 2021, 2147, 101-110.	0.4	4
9	Poly(3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro- and microstructural features by additive manufacturing. Journal of Biotechnology, 2020, 308, 96-107.	1.9	15
10	Targeting Pseudomonas aeruginosa in the Sputum of Primary Ciliary Dyskinesia Patients with a Combinatorial Strategy Having Antibacterial and Anti-Virulence Potential. International Journal of Molecular Sciences, 2020, 21, 69.	1.8	8
11	Renewable Polysaccharides Micro/Nanostructures for Food and Cosmetic Applications. Molecules, 2020, 25, 4886.	1.7	13
12	Tympanic Membrane Collagen Expression by Dynamically Cultured Human Mesenchymal Stromal Cell/Star-Branched Poly(Îμ-Caprolactone) Nonwoven Constructs. Applied Sciences (Switzerland), 2020, 10, 3043.	1.3	10
13	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
14	Development of eco-friendly composites based on polypropylene and cellulose for additive manufacturing (fused deposition modeling). AIP Conference Proceedings, 2020, , .	0.3	0
15	Development of ulvanâ€based emulsions containing flavour and fragrances for food and cosmetic applications. Flavour and Fragrance Journal, 2019, 34, 411-425.	1.2	21
16	A New Calcium Oral Controlled-Release System Based on Zeolite for Prevention of Osteoporosis. Nutrients, 2019, 11, 2467.	1.7	3
17	Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical Reviews, 2019, 11, 807-815.	1.5	38
18	Biomedical Processing of Polyhydroxyalkanoates. Bioengineering, 2019, 6, 108.	1.6	51

#	Article	IF	CITATIONS
19	Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydrate Polymers, 2019, 203, 310-321.	5.1	103
20	Design, Preparation, and Characterization of Thermoresponsive Hybrid Nanogels Using a Novel Ulvanâ€Acrylate Crosslinker as Potential Carriers for Protein Encapsulation. Macromolecular Chemistry and Physics, 2018, 219, 1700631.	1.1	6
21	Design, fabrication and characterization of tailored poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyexanoate] scaffolds by computer-aided wet-spinning. Rapid Prototyping Journal, 2018, 24, 1-8.	1.6	17
22	Biofabrication via integrated additive manufacturing and electrofluidodynamics. , 2018, , 71-85.		1
23	Additive Manufacturing of Poly(Methyl Methacrylate) Biomedical Implants with Dualâ€Scale Porosity. Macromolecular Materials and Engineering, 2018, 303, 1800247.	1.7	20
24	Drug release kinetics of electrospun fibrous systems. , 2018, , 349-374.		6
25	Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. Polymer International, 2017, 66, 1690-1696.	1.6	71
26	A Low Cost, Portable Device for Breath Analysis and Self-monitoring, the Wize Sniffer. Lecture Notes in Electrical Engineering, 2017, , 51-57.	0.3	2
27	Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning. Biomedical Materials (Bristol), 2017, 12, 035011.	1.7	28
28	Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Materials and Design, 2017, 122, 206-219.	3.3	57
29	Additive manufacturing of poly[(<i>R</i>)-3-hydroxybutyrate- <i>co</i> -(<i>R</i>)-3-hydroxyhexanoate] scaffolds for engineered bone development. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 175-186.	1.3	53
30	Perspectives on Biomedical Applications of Ulvan. , 2017, , 305-330.		13
31	Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering, 2017, 4, 36.	1.6	45
32	Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering. Bioengineering, 2017, 4, 49.	1.6	31
33	Human Adipose Tissue-Derived Stem Cells and a Poly(<i>Ĵµ</i> -Caprolactone) Scaffold Produced by Computer-Aided Wet Spinning for Bone Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2017, 7, 622-633.	0.0	9
34	Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. Journal of Bioactive and Compatible Polymers, 2016, 31, 531-549.	0.8	56
35	Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects. Journal of Bioactive and Compatible Polymers, 2016, 31, 15-30.	0.8	28
36	Modelling of pancreatic ductal adenocarcinoma in vitro with three-dimensional microstructured hydrogels. RSC Advances, 2016, 6, 54226-54235.	1.7	33

#	Article	IF	CITATIONS
37	Enzymatically Crosslinked Ulvan Hydrogels as Injectable Systems for Cell Delivery. Macromolecular Chemistry and Physics, 2016, 217, 581-590.	1.1	27
38	Integrated threeâ€dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polymer International, 2016, 65, 631-640.	1.6	36
39	Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing. Journal of Materials Science: Materials in Medicine, 2016, 27, 44.	1.7	39
40	Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydrate Polymers, 2016, 136, 1108-1117.	5.1	49
41	Comparing Chemical and Enzymatic Hydrolysis of Whey Lactose to Generate Feedstocks for Haloarchaeal Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) Biosynthesis. International Journal of Pharmaceutical Sciences Research, 2016, 3, .	0.3	11
42	<i>In Vitro</i> Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(<i>ε</i> -caprolactone) Film for Bone Tissue Engineering Applications. BioMed Research International, 2015, 2015, 1-12.	0.9	13
43	Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering. Biofabrication, 2015, 7, 025005.	3.7	63
44	Additive manufacturing techniques for the production of tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 174-190.	1.3	287
45	Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1562-1579.	1.6	71
46	Additive manufacturing of star poly(ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 320-340.	0.8	66
47	Melt electrospinning writing of threeâ€dimensional star poly(ϵâ€caprolactone) scaffolds. Polymer International, 2013, 62, 893-900.	1.6	51
48	Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 492-507.	0.8	35
49	Polymers from Renewable Resources. Journal of Renewable Materials, 2013, 1, 83-112.	1.1	22
50	Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomedical Microdevices, 2012, 14, 1115-1127.	1.4	118
51	Polymeric nanostructured items electrospun on a cylindrical template: a simple procedure for their removal. Polymer International, 2011, 60, 1162-1166.	1.6	8
52	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 253-263.	1.3	77
53	Dual-Scale Polymeric Constructs as Scaffolds for Tissue Engineering. Materials, 2011, 4, 527-542.	1.3	57
54	A novel Electrospinning Procedure for the Production of Straight Aligned and Winded Fibers. Nano Biomedicine and Engineering, 2011, 3, .	0.3	3

#	Article	IF	CITATIONS
55	Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. Journal of Materials Science: Materials in Medicine, 2010, 21, 1761-1769.	1.7	88
56	Development of Electrospun Threeâ€arm Star Poly(<i>ε</i> aprolactone) Meshes for Tissue Engineering Applications. Macromolecular Bioscience, 2010, 10, 887-897.	2.1	41
57	Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35, 403-440.	11.8	788
58	Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomaterialia, 2010, 6, 1258-1268.	4.1	95
59	Electrospun Polymeric Meshes for Application in Tissue Engineering. Biomedicine and Pharmacotherapy, 2008, 62, 489-490.	2.5	2
60	Poly(methyl methacrylate) membranes with controlled porosity for advanced multi-step drug elution. Journal of Applied Biomaterials and Biomechanics, 2007, 5, 95-106.	0.4	1