Ali Nasimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682233/publications.pdf

Version: 2024-02-01

		759055	642610
30	574	12	23
papers	citations	h-index	g-index
31	31	31	784
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Another controller system for arterial pressure. Angll-vasopressin neural network of the parvocellular paraventricular nucleus may regulate arterial pressure during hypotension. Brain Research, 2021, 1769, 147618.	1.1	3
2	Roles of glutamate and GABA of the Kölliker-Fuse nucleus in generating the cardiovascular chemoreflex. Pflugers Archiv European Journal of Physiology, 2020, 472, 1051-1063.	1.3	8
3	The neurological manifestations of COVID-19: a review article. Neurological Sciences, 2020, 41, 1667-1671.	0.9	216
4	Interaction of GABA and norepinephrine in the lateral division of the bed nucleus of the stria terminals in anesthetized rat, correlating single-unit and cardiovascular responses. Neuroscience, 2017, 356, 255-264.	1.1	3
5	Functions of AT1 and AT2 angiotensin receptors in the paraventricular nucleus of the rat, correlating single-unit and cardiovascular responses. Brain Research Bulletin, 2017, 132, 170-179.	1.4	11
6	Endogenous angiotensin II in the paraventricular nucleus regulates arterial pressure during hypotension in rat, a single-unit study. Neuroscience Research, 2017, 114, 35-42.	1.0	8
7	Contribution of amygdala to the pressor response elicited by microinjection of angiotensin II into the bed nucleus of the stria terminalis. Brain Research Bulletin, 2016, 127, 202-207.	1.4	1
8	Angiotensin II in the paraventricular nucleus stimulates sympathetic outflow to the cardiovascular system and make vasopressin release in rat. Neuroscience Letters, 2016, 632, 98-103.	1.0	15
9	Vasopressin and sympathetic system mediate the cardiovascular effects of the angiotensin II in the bed nucleus of the stria terminalis in rat. Neuroscience Research, 2016, 108, 34-39.	1.0	9
10	GABA modulates baroreflex in the ventral tegmental area in rat. Synapse, 2015, 69, 592-599.	0.6	4
11	Cardiovascular and single-unit responses to microinjection of angiotensin II into the bed nucleus of the stria terminalis in rat. Neuroscience, 2015, 300, 418-424.	1.1	8
12	Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain. Neuroscience Letters, 2015, 600, 193-198.	1.0	1
13	Cardiovascular and single-unit responses to l-glutamate injection into the posterior insular cortex in rat. Neuroscience, 2015, 306, 63-73.	1.1	3
14	Effect of chronic stress on short and long-term plasticity in dentate gyrus; Study of recovery and adaptation. Neuroscience, 2014, 280, 121-129.	1.1	26
15	Cardiovascular responses of the anterior claustrum; its mechanism; contribution of medial prefrontal cortex. Autonomic Neuroscience: Basic and Clinical, 2013, 179, 68-74.	1.4	3
16	GLUTAMATE INJECTION INTO THE CUNEIFORM NUCLEUS IN RAT, PRODUCES CORRELATED SINGLE UNIT ACTIVITIES IN THE KOLLIKER-FUSE NUCLEUS AND CARDIOVASCULAR RESPONSES. Neuroscience, 2012, 223, 439-446.	1.1	22
17	Role of cuneiform nucleus in regulation of sympathetic vasomotor tone in rats. Pathophysiology, 2012, 19, 151-155.	1.0	11
18	Hemodynamic responses and serum nitrite concentration during uncontrolled hemorrhagic shock in normotensive and hypertensive rats. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2012, 156, 224-228.	0.2	2

#	Article	IF	CITATIONS
19	Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: Role of the pontine Kolliker–Fuse nucleus. Brain Research, 2011, 1385, 135-143.	1.1	35
20	The role of the cholinergic system of the bed nucleus of the stria terminalis on the cardiovascular responses and the baroreflex modulation in rats. Brain Research, 2011, 1386, 81-88.	1.1	14
21	Effects of hypertension on hemodynamic response and serum nitrite concentration during graded hemorrhagic shock in rats. Journal of Research in Medical Sciences, 2011, 16, 1168-75.	0.4	2
22	Regularly firing neurons in the inferior colliculus have a weak interaural intensity difference sensitivity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 889-897.	0.7	7
23	Vasopressin and sympathetic systems mediate the cardiovascular effects of the GABAergic system in the bed nucleus of the stria terminalis. Neuroscience Research, 2009, 65, 347-352.	1.0	17
24	Glutamatergic systems in the bed nucleus of the stria terminalis, effects on cardiovascular system. Experimental Brain Research, 2007, 178, 394-401.	0.7	26
25	Effects of stress on exacerbation of diabetes mellitus, serum glucose and cortisol levels and body weight in rats. Pathophysiology, 2006, 13, 51-55.	1.0	35
26	Reactive oxygen metabolites and anti-oxidative defenses in aspirin-induced gastric damage in rats: Gastroprotection by Vitamin E. Pathophysiology, 2006, 13, 237-243.	1.0	28
27	Interaction of GABA and glutamate in the horizontal limb of diagonal band of Broca (hDB): role in cardiovascular responses. Brain Research, 2005, 1042, 37-43.	1.1	6
28	Ascorbate reduces morphine-induced extracellular DOPAC level in the nucleus accumbens: A microdialysis study in rats. Brain Research, 2005, 1053, 62-66.	1.1	18
29	GABA and Glutamate receptors in the horizontal limb of diagonal band of Broca (hDB): effects on cardiovascular regulation. Experimental Brain Research, 2005, 167, 268-275.	0.7	11
30	Ascorbic acid decreases morphine self-administration and withdrawal symptoms in rats. Pathophysiology, 2005, 12, 103-107.	1.0	21