Stefan W Metz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6821279/publications.pdf Version: 2024-02-01

STEEAN W/ METZ

#	Article	IF	CITATIONS
1	Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells. Journal of Virology, 2012, 86, 13486-13500.	3.4	248
2	Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells. PLoS Neglected Tropical Diseases, 2013, 7, e2124.	3.0	122
3	Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clinical Therapeutics, 2017, 39, 1519-1536.	2.5	95
4	Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. Virology Journal, 2011, 8, 353.	3.4	85
5	Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine, 2013, 31, 6092-6096.	3.8	68
6	Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. Journal of Invertebrate Pathology, 2011, 107, S16-S30.	3.2	51
7	Human antibody response to Zika targets type-specific quaternary structure epitopes. JCI Insight, 2019, 4, .	5.0	45
8	Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal, 2018, 15, 60.	3.4	42
9	In Vitro Assembly and Stabilization of Dengue and Zika Virus Envelope Protein Homo-Dimers. Scientific Reports, 2017, 7, 4524.	3.3	41
10	Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses. PLoS Neglected Tropical Diseases, 2016, 10, e0005071.	3.0	31
11	Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation. PLoS ONE, 2011, 6, e25816.	2.5	29
12	Role of Zika Virus Envelope Protein Domain III as a Target of Human Neutralizing Antibodies. MBio, 2019, 10, .	4.1	26
13	Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host and Microbe, 2020, 27, 710-724.e7.	11.0	25
14	Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host and Microbe, 2021, 29, 13-22.	11.0	24
15	Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. Journal of Biological Chemistry, 2018, 293, 8922-8933.	3.4	22
16	Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Neglected Tropical Diseases, 2018, 12, e0006793.	3.0	22
17	Oligomeric state of the ZIKV E protein defines protective immune responses. Nature Communications, 2019, 10, 4606.	12.8	22
18	Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Science Advances, 2021, 7, eabg4084.	10.3	22

STEFAN W METZ

#	Article	IF	CITATIONS
19	Selecting the optimal Tetâ€On system for doxycyclineâ€inducible gene expression in transiently transduced mammalian cells. Biotechnology Journal, 2016, 11, 71-79.	3.5	21
20	Production of Chikungunya Virus-Like Particles and Subunit Vaccines in Insect Cells. Methods in Molecular Biology, 2016, 1426, 297-309.	0.9	15
21	Function of Chikungunya Virus Structural Proteins. , 2016, , 63-74.		13
22	A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. Journal of Virological Methods, 2015, 222, 55-61.	2.1	10
23	Optimization of Surface Display of DENV2 E Protein on a Nanoparticle to Induce Virus Specific Neutralizing Antibody Responses. Bioconjugate Chemistry, 2018, 29, 1544-1552.	3.6	10
24	Dimerization of Dengue Virus E Subunits Impacts Antibody Function and Domain Focus. Journal of Virology, 2020, 94, .	3.4	9
25	Alphavirus capsid proteins selfâ€assemble into coreâ€like particles in insect cells: A promising platform for nanoparticle vaccine development. Biotechnology Journal, 2016, 11, 266-273.	3.5	6
26	Focused dengue vaccine development: outwitting nature's design. Pathogens and Disease, 2019, 77, .	2.0	5
27	Immunological implications of diverse production approaches for Chikungunya virus-like particle vaccines. Vaccine, 2022, , .	3.8	2
28	Secreted Trimeric Chikungunya Virus Spikes from Insect Cells: Production, Purification, and Glycosylation Status. Processes, 2022, 10, 162.	2.8	1
29	Chikungunya and Zika Virus Vaccines. , 2018, , 347-365.		Ο