Richard Wheeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6821260/publications.pdf Version: 2024-02-01

RICHARD WHEELER

#	Article	IF	CITATIONS
1	Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science, 2022, 376, eabj3986.	12.6	76
2	Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiology Reviews, 2021, 45, .	8.6	27
3	Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death and Differentiation, 2021, 28, 2276-2295.	11.2	18
4	Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response. Journal of Biological Chemistry, 2020, 295, 16785-16796.	3.4	11
5	Cross-reactivity between tumor MHC class l–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	12.6	217
6	Study of the cwaRS-ldcA Operon Coding a Two-Component System and a Putative L,D-Carboxypeptidase in Lactobacillus paracasei. Frontiers in Microbiology, 2020, 11, 156.	3.5	0
7	Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis. ELife, 2020, 9, .	6.0	7
8	A step-by-step guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptidoglycan-degrading lytic transglycosylase. Journal of Biological Chemistry, 2018, 293, 6000-6010.	3.4	18
9	N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. Journal of Biological Chemistry, 2018, 293, 18040-18054.	3.4	24
10	Bulgecin A: The Key to a Broadâ€5pectrum Inhibitor That Targets Lytic Transglycosylases. Antibiotics, 2017, 6, 8.	3.7	30
11	Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS ONE, 2017, 12, e0184976.	2.5	76
12	LipL21 lipoprotein binding to peptidoglycan enables Leptospira interrogans to escape NOD1 and NOD2 recognition. PLoS Pathogens, 2017, 13, e1006725.	4.7	45
13	Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases. MBio, 2015, 6, e00660.	4.1	83
14	Peptidoglycan and Nod Receptor. , 2015, , 737-747.		9
15	Paenibacillus faecis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4621-4626.	1.7	25
16	The Immune Receptor NOD1 and Kinase RIP2 Interact with Bacterial Peptidoglycan on Early Endosomes to Promote Autophagy and Inflammatory Signaling. Cell Host and Microbe, 2014, 15, 623-635.	11.0	249
17	The biology of bacterial peptidoglycans and their impact on host immunity and physiology. Cellular Microbiology, 2014, 16, 1014-1023.	2.1	52
18	Listeria monocytogenes Is Resistant to Lysozyme through the Regulation, Not the Acquisition, of Cell Wall-Modifying Enzymes. Journal of Bacteriology, 2014, 196, 3756-3767.	2.2	58

#	Article	IF	CITATIONS
19	Peptidoglycan and Nod Receptor. , 2014, , 1-10.		3
20	Superâ€resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Molecular Microbiology, 2011, 82, 1096-1109.	2.5	111
21	Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nature Communications, 2010, 1, 26.	12.8	114