
Leticia M. Estevinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6821239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 2019, 24, 2277.	3.8	416
2	Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 2008, 46, 3774-3779.	3.6	392
3	Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 2007, 12, 1153-1162.	3.8	385
4	Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chemistry, 2009, 114, 1438-1443.	8.2	374
5	Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 2007, 45, 2287-2295.	3.6	356
6	Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008, 46, 2742-2747.	3.6	356
7	Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology, 2008, 46, 2326-2331.	3.6	353
8	Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food and Chemical Toxicology, 2008, 46, 2103-2111.	3.6	284
9	Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 2014, 63, 233-239.	3.6	252
10	Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 2010, 48, 544-548.	3.6	227
11	Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food and Chemical Toxicology, 2011, 49, 1096-1101.	3.6	219
12	Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food and Chemical Toxicology, 2008, 46, 3482-3485.	3.6	208
13	Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules, 2012, 17, 8359-8377.	3.8	201
14	Chemical Composition and Biological Properties of Portuguese Wild Mushrooms: A Comprehensive Study. Journal of Agricultural and Food Chemistry, 2008, 56, 3856-3862.	5.2	198
15	Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 2007, 225, 151-156.	3.3	189
16	Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, 2012, 50, 1790-1795.	3.6	189
17	Table Olives from Portugal:  Phenolic Compounds, Antioxidant Potential, and Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 8425-8431.	5.2	187
18	Phenolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Analytical and Bioanalytical Chemistry, 2010, 396, 887-897.	3.7	149

#	Article	IF	CITATIONS
19	Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus) Tj ETQq1 1 0.78	431 <u>4</u> rgBT	/Overlock 10 126
20	Commercial Bee Pollen with Different Geographical Origins: A Comprehensive Approach. International Journal of Molecular Sciences, 2012, 13, 11173-11187.	4.1	125
21	Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science and Technology, 2012, 47, 429-435.	2.7	118
22	Phenolics and antimicrobial activity of traditional stoned table olives â€~alcaparra'. Bioorganic and Medicinal Chemistry, 2006, 14, 8533-8538.	3.0	113
23	Biological activities of Portuguese propolis: Protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro. Food and Chemical Toxicology, 2011, 49, 86-92.	3.6	106
24	Comparative study of the physicochemical and palynological characteristics of honey from <i><scp>M</scp>elipona subnitida</i> and <i><scp>A</scp>pis mellifera</i> . International Journal of Food Science and Technology, 2013, 48, 1698-1706.	2.7	94
25	Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Propolis from the Stingless Bee <i>Tetragonisca fiebrigi</i> (JataÃ). Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-11.	1.2	90
26	Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of <i>Lactarius</i> sp. Mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55, 8766-8771.	5.2	89
27	Characterization of artisanal honey produced on the Northwest of Portugal by melissopalynological and physico-chemical data. Food and Chemical Toxicology, 2010, 48, 3462-3470.	3.6	81
28	Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Science of the Total Environment, 2018, 634, 831-842.	8.0	81
29	High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiology, 2013, 33, 114-123.	4.2	80
30	Organic honey from TrÃis-Os-Montes region (Portugal): Chemical, palynological, microbiological and bioactive compounds characterization. Food and Chemical Toxicology, 2012, 50, 258-264.	3.6	77
31	Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food and Chemical Toxicology, 2012, 50, 4246-4253.	3.6	76
32	Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. Journal of Agricultural and Food Chemistry, 2019, 67, 688-698.	5.2	73
33	Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food and Chemical Toxicology, 2009, 47, 2057-2063.	3.6	70
34	Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Analytica Chimica Acta, 2010, 660, 43-52.	5.4	68
35	An electronic tongue for honey classification. Mikrochimica Acta, 2008, 163, 97-102.	5.0	67
36	Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 2007, 105, 1018-1025.	8.2	64

#	Article	IF	CITATIONS
37	Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria?. Antibiotics, 2020, 9, 774.	3.7	64
38	Evaluation of the antioxidant properties of diarylamines in the benzo[b]thiophene series by free radical scavenging activity and reducing power. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1384-1387.	2.2	60
39	Transglutaminases: recent achievements and new sources. Applied Microbiology and Biotechnology, 2014, 98, 6957-6964.	3.6	60
40	Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. LWT - Food Science and Technology, 2016, 65, 808-815.	5.2	60
41	Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. Journal of Food Science and Technology, 2011, 48, 640-643.	2.8	55
42	Toxicity effects of fungicide residues on the wine-producing process. Food Microbiology, 2006, 23, 393-398.	4.2	53
43	Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chemistry, 2007, 105, 179-186.	8.2	53
44	Pollen spectrum and physicoâ€chemical attributes of heather (<i>Erica</i> sp.) honeys of north Portugal. Journal of the Science of Food and Agriculture, 2009, 89, 1862-1870.	3.5	53
45	Palynological and physicochemical data characterisation of honeys produced in the <i>Entreâ€Douro e Minho</i> region of Portugal. International Journal of Food Science and Technology, 2010, 45, 1255-1262.	2.7	53
46	Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole. BMC Microbiology, 2014, 14, 155.	3.3	53
47	Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins. International Journal of Molecular Sciences, 2017, 18, 921.	4.1	53
48	Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food and Chemical Toxicology, 2008, 46, 2895-2902.	3.6	52
49	Triacylglyceride, Antioxidant and Antimicrobial Features of Virgin Camellia oleifera, C. reticulata and C. sasanqua Oils. Molecules, 2013, 18, 4573-4587.	3.8	52
50	Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chemistry, 2008, 110, 953-961.	8.2	50
51	Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia speciosa Gomes. PLoS ONE, 2016, 11, e0167531.	2.5	49
52	Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Research International, 2014, 55, 311-323.	6.2	48
53	Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi. International Journal of Molecular Sciences, 2017, 18, 953.	4.1	48
54	Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. LWT - Food Science and Technology, 2019, 111, 869-875.	5.2	48

#	Article	IF	CITATIONS
55	Study of Organic Honey from the Northeast of Portugal. Molecules, 2011, 16, 5374-5386.	3.8	47
56	Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules, 2014, 19, 12577-12590.	3.8	47
57	A Survey of the <i>In Vitro</i> Antifungal Activity of Heather (<i>Erica</i> Sp.) Organic Honey. Journal of Medicinal Food, 2011, 14, 1284-1288.	1.5	45
58	FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chemistry, 2016, 205, 28-35.	8.2	45
59	Synthesis and antimicrobial activity studies of ortho-chlorodiarylamines and heteroaromatic tetracyclic systems in the benzo[b]thiophene series. Bioorganic and Medicinal Chemistry, 2006, 14, 6827-6831.	3.0	42
60	A multivariate approach based on physicochemical parameters and biological potential for the botanical and geographical discrimination of Brazilian bee pollen. Food Bioscience, 2018, 25, 91-110.	4.4	42
61	Role of Honey in Advanced Wound Care. Molecules, 2021, 26, 4784.	3.8	41
62	Palladium-Catalysed Amination of Electron-Deficient or Relatively Electron-Rich Benzo[b]thienyl Bromidesâ^' Preliminary Studies of Antimicrobial Activity and SARs. European Journal of Organic Chemistry, 2004, 2004, 3679-3685.	2.4	40
63	Synthesis and antioxidant activity evaluation of new 7-aryl or 7-heteroarylamino-2,3-dimethylbenzo[b]thiophenes obtained by Buchwald–Hartwig C–N cross-coupling. Bioorganic and Medicinal Chemistry, 2007, 15, 1788-1794.	3.0	39
64	Screening of antimicrobial activity of diarylamines in the 2,3,5-trimethylbenzo[b]thiophene series: a structure–activity evaluation study. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5831-5833.	2.2	38
65	Mead Production. Advances in Food and Nutrition Research, 2011, 63, 101-118.	3.0	38
66	Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta, 2014, 128, 284-292.	5.5	38
67	A diagnosis of the microbiological quality of dehydrated bee-pollen produced in Brazil. Letters in Applied Microbiology, 2015, 61, 477-483.	2.2	38
68	Microbiological Assessment, Nutritional Characterization and Phenolic Compounds of Bee Pollen from Mellipona mandacaia Smith, 1983. Molecules, 2015, 20, 12525-12544.	3.8	38
69	Comprehensive Study of Honey with Protected Denomination of Origin and Contribution to the Enhancement of Legal Specifications. Molecules, 2012, 17, 8561-8577.	3.8	36
70	Effect of Saccharomyces cerevisiae cells immobilisation on mead production. LWT - Food Science and Technology, 2014, 56, 21-30.	5.2	35
71	Phenolic profile by HPLC-MS, biological potential, and nutritional value of a promising food: Monofloral bee pollen. Journal of Food Biochemistry, 2018, 42, e12536.	2.9	34
72	Synthesis of β-Benzo[b]thienyldehydrophenylalanine Derivatives by One-Pot Palladium-Catalyzed Borylation and Suzuki Coupling (BSC) and Metal-Assisted Intramolecular Cyclization - Studies of Fluorescence and Antimicrobial Activity. European Journal of Organic Chemistry, 2005, 2005, 2951-2957.	2.4	33

#	Article	IF	CITATIONS
73	Optimization of mead production using Response Surface Methodology. Food and Chemical Toxicology, 2013, 59, 680-686.	3.6	33
74	Presence and stability of B complex vitamins in bee pollen using different storage conditions. Food and Chemical Toxicology, 2013, 51, 143-148.	3.6	33
75	A novel approach for honey pollen profile assessment using an electronic tongue and chemometric tools. Analytica Chimica Acta, 2015, 900, 36-45.	5.4	33
76	Application of FTIR-ATR spectroscopy on the bee pollen characterization. Journal of Apicultural Research, 2017, 56, 210-218.	1.5	33
77	The Chemical Profile of <i>Senna velutina</i> Leaves and Their Antioxidant and Cytotoxic Effects. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	32
78	Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta, 2018, 178, 43-48.	5.5	32
79	Synthesis of pure stereoisomers of benzo[b]thienyl dehydrophenylalanines by Suzuki cross-coupling. Preliminary studies of antimicrobial activity. Tetrahedron, 2004, 60, 11821-11828.	1.9	30
80	Microbiological quality and physicochemical characterization of Brazilian bee pollen. Journal of Apicultural Research, 2017, 56, 231-238.	1.5	30
81	Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction. Plant Foods for Human Nutrition, 2018, 73, 253-267.	3.2	29
82	Identification of hare meat by a species-specific marker of mitochondrial origin. Meat Science, 2012, 90, 836-841.	5.5	28
83	Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 2019, 285, 24-33.	7.8	27
84	Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes, 2020, 8, 1609.	2.8	27
85	Use of Propolis in the Sanitization of Lettuce. International Journal of Molecular Sciences, 2014, 15, 12243-12257.	4.1	25
86	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	1.5	25
87	Efficiency of the <scp>FT</scp> â€ <scp>IR ATR</scp> spectrometry for the prediction of the physicochemical characteristics of <i><scp>M</scp>elipona subnitida</i> honey and study of the temperature's effect on those properties. International Journal of Food Science and Technology, 2014, 49, 188-195.	2.7	24
88	Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chemistry, 2021, 339, 128098.	8.2	24
89	Effect of Erica sp. Honey against Microorganisms of Clinical Importance: Study of the Factors Underlying this Biological Activity. Molecules, 2013, 18, 4233-4246.	3.8	23
90	Effect of processing conditions on the bioactive compounds and biological properties of bee pollen. Journal of Apicultural Research, 2016, 55, 357-365.	1.5	23

#	Article	IF	CITATIONS
91	Influence of the storage conditions on the quality of bee pollen. Zemdirbyste, 2019, 106, 87-94.	0.8	23
92	Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles inCandida glabrata. FEMS Yeast Research, 2014, 14, n/a-n/a.	2.3	22
93	Improvement of mead fermentation by honey-must supplementation. Journal of the Institute of Brewing, 2015, 121, 405-410.	2.3	22
94	Characterization of Lavandula spp. Honey Using Multivariate Techniques. PLoS ONE, 2016, 11, e0162206.	2.5	22
95	REVIEW: Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiological and Molecular Plant Pathology, 2018, 104, 119-126.	2.5	21
96	Mead production: effect of nitrogen supplementation on growth, fermentation profile and aroma formation by yeasts in mead fermentation. Journal of the Institute of Brewing, 2015, 121, 122-128.	2.3	20
97	Preliminary characterization of a Moroccan honey with a predominance of <i>Bupleurum spinosum</i> pollen. Journal of Apicultural Research, 2018, 57, 153-165.	1.5	20
98	Volatile Composition and Sensory Properties of Mead. Microorganisms, 2019, 7, 404.	3.6	20
99	Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 220, 36-46.	2.6	20
100	Application of Functional Data Analysis and FTIR-ATR Spectroscopy to Discriminate Wine Spirits Ageing Technologies. Mathematics, 2020, 8, 896.	2.2	19
101	Antibacterial Action Mechanisms of Honey: Physiological Effects of Avocado, Chestnut, and Polyfloral Honey upon Staphylococcus aureus and Escherichia coli. Molecules, 2020, 25, 1252.	3.8	19
102	Propolis influence on erythrocyte membrane disorder (hereditary spherocytosis): A first approach. Food and Chemical Toxicology, 2011, 49, 520-526.	3.6	18
103	Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes, 2020, 8, 736.	2.8	18
104	Scientifically advanced solutions for chestnut ink disease. Applied Microbiology and Biotechnology, 2014, 98, 3905-3909.	3.6	17
105	Relating physicochemical and microbiological safety indicators during processing of linguiça , a Portuguese traditional dry-fermented sausage. Food Research International, 2015, 78, 50-61.	6.2	17
106	Computational intelligence applied to discriminate bee pollen quality and botanical origin. Food Chemistry, 2018, 267, 36-42.	8.2	17
107	Antioxidant, photoprotective and inhibitory activity of tyrosinase in extracts of Dalbergia ecastaphyllum. PLoS ONE, 2018, 13, e0207510.	2.5	17
108	Honey Evaluation Using Electronic Tongues: An Overview. Chemosensors, 2018, 6, 28.	3.6	17

#	Article	IF	CITATIONS
109	Evaluation of Physiological Effects Induced by Manuka Honey Upon Staphylococcus aureus and Escherichia coli. Microorganisms, 2019, 7, 258.	3.6	17
110	Rheological and sensorial evaluation of yogurt incorporated with red propolis. Journal of Food Science and Technology, 2020, 57, 1080-1089.	2.8	17
111	Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications. Materials, 2020, 13, 1977.	2.9	17
112	Influence of Sweetness and Ethanol Content on Mead Acceptability. Polish Journal of Food and Nutrition Sciences, 2015, 65, 137-142.	1.7	16
113	Mead and Other Fermented Beverages. , 2017, , 407-434.		16
114	Hazelnut (Corylus avellana L.) Cultivars and Antimicrobial Activity. , 2011, , 627-636.		15
115	An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin. Food and Chemical Toxicology, 2019, 134, 110864.	3.6	15
116	Probiotic Yogurt with Brazilian Red Propolis: Physicochemical and Bioactive Properties, Stability, and Shelf Life. Journal of Food Science, 2019, 84, 3429-3436.	3.1	15
117	Antioxidant activity and enzyme inhibitory potential of Euphorbia resinifera and E. officinarum honeys from Morocco and plant aqueous extracts. Environmental Science and Pollution Research, 2021, 28, 503-517.	5.3	15
118	Comparative Study of the Antioxidant and Enzyme Inhibitory Activities of Two Types of Moroccan Euphorbia Entire Honey and Their Phenolic Extracts. Foods, 2021, 10, 1909.	4.3	15
119	Influence of fining agents on the sensorial characteristics and volatile composition of mead. Journal of the Institute of Brewing, 2017, 123, 562-571.	2.3	14
120	Influence of the Storage Conditions (Frozen vs. Dried) in Healthâ€Related Lipid Indexes and Antioxidants of Bee Pollen. European Journal of Lipid Science and Technology, 2019, 121, 1800393.	1.5	14
121	Spanish honeys with quality brand: a multivariate approach to physicochemical parameters, microbiological quality, and floral origin. Journal of Apicultural Research, 2019, 58, 92-103.	1.5	14
122	Sensory impact of alternative ageing technology for the production of wine brandies. Ciencia E Tecnica Vitivinicola, 2017, 32, 12-22.	0.9	13
123	A peculiar behaviour for cell death induced by weak carboxylic acids in the wine spoilage yeastZygosaccharomyces bailii. Letters in Applied Microbiology, 1999, 28, 345-349.	2.2	12
124	Honey Health Benefits and Uses in Medicine. , 2017, , 83-96.		12
125	Conventional and emergent technologies for honey processing: A perspective on microbiological safety, bioactivity, and quality. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5393-5420.	11.7	12
126	PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy. Sensors, 2022, 22, 286.	3.8	12

#	Article	IF	CITATIONS
127	Physicochemical and Sensorial Characterization of Honey Spirits. Foods, 2017, 6, 58.	4.3	11
128	FT-Raman methodology applied to identify different ageing stages of wine spirits. LWT - Food Science and Technology, 2020, 134, 110179.	5.2	11
129	Microbiological quality and sensory evaluation of new cured products obtained from sheep and goat meat. Animal Production Science, 2017, 57, 391.	1.3	10
130	Development of a Spirit Drink Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Honey. Beverages, 2020, 6, 38.	2.8	10
131	Effect of extreme heat processing on the Moroccan Zantaz' honey antioxidant activities. Journal of Food Science and Technology, 2020, 57, 3323-3333.	2.8	10
132	Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. Food and Bioproducts Processing, 2021, 127, 408-425.	3.6	10
133	Production and characterization of mead from the honey of <i>Melipona scutellaris</i> stingless bees. Journal of the Institute of Brewing, 2018, 124, 194-200.	2.3	9
134	Physicochemical characterization and antioxidant activity of honey with Eragrostis spp. pollen predominance. Journal of Food Biochemistry, 2018, 42, e12431.	2.9	9
135	Zantaz honey "monofloralityâ€: Chemometric applied to the routinely assessed parameters. LWT - Food Science and Technology, 2019, 106, 29-36.	5.2	9
136	Evaluation of FT-Raman and FTIR-ATR spectroscopy for the quality evaluation of <i>Lavandula</i> spp. Honey. Open Agriculture, 2021, 6, 47-56.	1.7	9
137	The Role of Honey and Propolis in the Treatment of Infected Wounds. , 2014, , 221-234.		8
138	Quantification of three phenolic classes and total phenolic content of propolis extracts using a single UV-vis spectrum. Journal of Apicultural Research, 2017, 56, 569-580.	1.5	8
139	Chemical Composition and Pharmacological Effects of Geopropolis Produced by <i>Melipona quadrifasciata anthidioides</i> . Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	4.0	8
140	FT-RAMAN methodology for the monitoring of honeys' spirit distillation process. Food Chemistry, 2020, 305, 125511.	8.2	8
141	Detection of biogenic amines in mead of social bee. LWT - Food Science and Technology, 2020, 121, 108969.	5.2	8
142	Effect of different cooking methods on the total phenolic content, antioxidant activity and sensory properties of wild Boletus edulis mushroom. International Journal of Gastronomy and Food Science, 2021, 26, 100416.	3.0	8
143	Special Bioactivities of Phenolics from Acacia dealbata L. with Potential for Dementia, Diabetes and Antimicrobial Treatments. Applied Sciences (Switzerland), 2022, 12, 1022.	2.5	8
144	Impact of fining agents on the volatile composition of sparkling mead. Journal of the Institute of Brewing, 2019, 125, 125-133.	2.3	7

#	Article	IF	CITATIONS
145	Potential Wound Healing Effect of Gel Based on Chicha Gum, Chitosan, and Mauritia flexuosa Oil. Biomedicines, 2022, 10, 899.	3.2	7
146	Palynological, physicochemical, and microbiological attributes of organic lavender <i>(Lavandula) Tj ETQq0 0 0 rg</i>	BT/Overlo	ck_10 Tf 50
147	Physicochemical Characterization, Microbiological Quality and Safety, and Pharmacological Potential of <i>Hancornia speciosa</i> Gomes. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-17.	4.0	5
148	Editorial—Special Issue "Nutraceuticals in Human Health and Disease― International Journal of Molecular Sciences, 2018, 19, 1213.	4.1	5
149	Antioxidants activity and physicochemical properties of honey from social bees of the Brazilian semiarid region. Journal of Apicultural Research, 2021, 60, 797-806.	1.5	4
150	Pollen spectrum of honey of <i>Apis mellifera</i> L. and stingless bees (Hymenoptera: Apidae) from the semi-arid region of Bahia State, Brazil. Grana, 2020, 59, 377-388.	0.8	4
151	Botanical origin, microbiological quality and physicochemical composition of the <i>Melipona scutellaris</i> pot-pollen ("samburĂ¡â€) from Bahia (Brazil) Region. Journal of Apicultural Research, 2021, 60, 457-469.	1.5	4
152	Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools. Applied Sciences (Switzerland), 2021, 11, 4675.	2.5	4
153	Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale. Applied Sciences (Switzerland), 2021, 11, 5065.	2.5	4
154	Enzyme Inhibitory Potential of Ligustrum lucidum Aiton Berries. Molecules, 2019, 24, 1283.	3.8	2
155	Mead Production Using Immobilized Cells of Saccharomyces cerevisiae: Reuse of Sodium Alginate Beads. Processes, 2021, 9, 724.	2.8	2
156	Mead production: fermentative performance of yeasts entrapped in different concentrations of alginate. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	1
157	<i>Dalbergia ecastaphyllum</i> leaf extracts: <i>in vitro</i> inhibitory potential against enzymes related to metabolic syndrome, inflammation and neurodegenerative diseases. Acta Scientiarum - Biological Sciences, 2019, 41, e46622.	0.3	1
158	Botanical origin, physicochemical characterization, and antioxidant activity of bee pollen samples from the northeast of Portugal. Journal of Apicultural Research, 0, , 1-11.	1.5	1
159	Screening of Biological Activities of <i>Ligustrum lucidum</i> Berries: A Comparative Approach. Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	0
160	Use of the electronic tongue as a tool for the characterization of <i>Melipona scutellaris</i> Latreille honey. Journal of Apicultural Research, 2022, 61, 79-90.	1.5	0

161Biological activities of endophytic fungi isolated from Annona muricata Linnaeus: a systematic review.0.90Brazilian Journal of Biology, 2022, 84, e259525.