Maria Sammalkorpi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820879/publications.pdf Version: 2024-02-01

MARIA SAMMALKORDI

#	Article	IF	CITATIONS
1	Effect of Ethanol and Urea as Solvent Additives on PSS–PDADMA Polyelectrolyte Complexation. Macromolecules, 2022, 55, 3140-3150.	2.2	11
2	Quantification of Water–Ion Pair Interactions in Polyelectrolyte Multilayers Using a Quartz Crystal Microbalance Method. ACS Polymers Au, 2022, 2, 287-298.	1.7	5
3	Modified Poissonâ ϵ "Boltzmann theory for polyelectrolytes in monovalent salt solutions with finite-size ions. Journal of Chemical Physics, 2022, 156, .	1.2	4
4	On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes. Cellulose, 2022, 29, 6109-6121.	2.4	10
5	Liquid–Liquid Phase Separation and Assembly of Silk-like Proteins is Dependent on the Polymer Length. Biomacromolecules, 2022, 23, 3142-3153.	2.6	10
6	Physisorption of bio oil nitrogen compounds onto montmorillonite. Physical Chemistry Chemical Physics, 2021, 23, 21840-21851.	1.3	9
7	Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose, 2021, 28, 3917-3933.	2.4	16
8	Self-assembly in soft matter with multiple length scales. Physical Review Research, 2021, 3, .	1.3	7
9	Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study. Polymers, 2021, 13, 2193.	2.0	13
10	Self-assembly of binary solutions to complex structures. Journal of Chemical Physics, 2021, 155, 014904.	1.2	3
11	Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules, 2021, 54, 7765-7776.	2.2	14
12	Dissipative particle dynamics simulations of H-shaped diblock copolymer self-assembly in solvent. Polymer, 2021, 233, 124198.	1.8	14
13	Self-Assembly of Silk-like Protein into Nanoscale Bicontinuous Networks under Phase-Separation Conditions. Biomacromolecules, 2021, 22, 690-700.	2.6	10
14	Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles. Journal of Physical Chemistry B, 2021, 125, 12315-12328.	1.2	21
15	Analyzing the weak dimerization of a cellulose binding module by analytical ultracentrifugation. International Journal of Biological Macromolecules, 2020, 163, 1995-2004.	3.6	10
16	pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. Journal of Physical Chemistry B, 2020, 124, 2961-2972.	1.2	29
17	Adsorption of impurities in vegetable oil: A molecular modelling study. Journal of Colloid and Interface Science, 2020, 571, 55-65.	5.0	12
18	Effect of particle surface corrugation on colloidal interactions. Journal of Colloid and Interface Science, 2020, 579, 794-804.	5.0	8

MARIA SAMMALKORPI

#	Article	IF	CITATIONS
19	Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. Soft Matter, 2020, 16, 2291-2300.	1.2	22
20	Comparing water-mediated hydrogen-bonding in different polyelectrolyte complexes. Soft Matter, 2019, 15, 7823-7831.	1.2	31
21	Hybrid Atomistic and Coarse-Grained Model for Surfactants in Apolar Solvents. ACS Omega, 2019, 4, 15581-15592.	1.6	11
22	Phospholipid-Based Reverse Micelle Structures in Vegetable Oil Modified by Water Content, Free Fatty Acid, and Temperature. Langmuir, 2019, 35, 8373-8382.	1.6	10
23	Time–Temperature and Time–Water Superposition Principles Applied to Poly(allylamine)/Poly(acrylic) Tj ETQ	2q1 _{2:2} 0.78	4314 rgBT /O
24	Shape and Phase Transitions in a PEGylated Phospholipid System. Langmuir, 2019, 35, 3999-4010.	1.6	25
25	Molecular crowding facilitates assembly of spidroin-like proteins through phase separation. European Polymer Journal, 2019, 112, 539-546.	2.6	28
26	Simulations Study of Single-Component and Mixed <i>n</i> -Alkyl-PEG Micelles. Journal of Physical Chemistry B, 2018, 122, 4851-4860.	1.2	15
27	Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies. ACS Central Science, 2018, 4, 638-644.	5.3	100
28	Effects of 1-hexanol on C12E10 micelles: a molecular simulations and light scattering study. Physical Chemistry Chemical Physics, 2018, 20, 6287-6298.	1.3	17
29	Surfactant Interactions and Organization at the Gas–Water Interface (CTAB with Added Salt). Langmuir, 2018, 34, 1855-1864.	1.6	26
30	Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces. Langmuir, 2018, 34, 5759-5771.	1.6	44
31	QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions. Langmuir, 2018, 34, 999-1009.	1.6	60
32	Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein. Physical Chemistry Chemical Physics, 2018, 20, 27192-27204.	1.3	8
33	Hydration and Temperature Response of Water Mobility in Poly(diallyldimethylammonium)–Poly(sodium 4-styrenesulfonate) Complexes. Macromolecules, 2018, 51, 8268-8277.	2.2	49
34	Role of Salt and Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. Journal of Physical Chemistry B, 2017, 121, 322-333.	1.2	72
35	Repulsion between oppositely charged rod-shaped macromolecules: Role of overcharging and ionic confinement. Journal of Chemical Physics, 2017, 147, 124901.	1.2	9
36	Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids and Surfaces B: Biointerfaces, 2017, 160, 355-363.	2.5	50

#	Article	IF	CITATIONS
37	Ability of the Poisson–Boltzmann equation to capture molecular dynamics predicted ion distribution around polyelectrolytes. Physical Chemistry Chemical Physics, 2017, 19, 24583-24593.	1.3	38

 $38 \qquad \text{Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)} \\ \hat{a} \in \text{``Poly(acrylic) Tj ETQq0 0 0 } \underbrace{\text{rgBT}}_{22} \text{/Overlock 10 Tf}_{23} \\ \hat{b} = \frac{1}{2} \underbrace{\text{rgBT}}_{22} \text{/Overlock 10 } \underbrace{\text{rgBT}}_{22} \text{/Overlock 10 Tf}_{23} \\ \hat{b} = \underbrace{\text{rgBT}}_{22} \underbrace{\text{rgBT}}_{23} \text{/Overlock 10 } \underbrace{\text{rgBT}}_{23} \\ \hat{b} = \underbrace{\text{rgBT}}_{23} \underbrace{\text{rgBT}}_{23} \underbrace{\text{$

39	Interaction modes between asymmetrically and oppositely charged rods. Physical Review E, 2016, 93, 022602.	0.8	8
40	Phosphatidylcholine reverse micelles on the wrong track in molecular dynamics simulations of phospholipids in an organic solvent. Journal of Chemical Physics, 2015, 142, 094902.	1.2	25
41	Chemistry specificity of DNA–polycation complex salt response: a simulation study of DNA, polylysine and polyethyleneimine. Physical Chemistry Chemical Physics, 2015, 17, 5279-5289.	1.3	37
42	Ewald Electrostatics for Mixtures of Point and Continuous Line Charges. Journal of Physical Chemistry B, 2015, 119, 13218-13226.	1.2	5
43	Controlling Carbon-Nanotube—Phospholipid Solubility by Curvature-Dependent Self-Assembly. Journal of Physical Chemistry B, 2015, 119, 4020-4032.	1.2	18
44	Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17, 14951-14960.	1.3	17
45	Asymmetric heat transfer from nanoparticles in lipid bilayers. Chemical Physics, 2015, 463, 22-29.	0.9	13
46	The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes. Soft Matter, 2015, 11, 7392-7401.	1.2	79
47	Thermal Transitions in Polyelectrolyte Assemblies Occur via a Dehydration Mechanism. ACS Macro Letters, 2015, 4, 1017-1021.	2.3	46
48	lon Transport through a Water–Organic Solvent Liquid–Liquid Interface: A Simulation Study. Journal of Physical Chemistry B, 2014, 118, 5957-5970.	1.2	14
49	Size-Selective, Noncovalent Dispersion of Carbon Nanotubes by PEGylated Lipids: A Coarse-Grained Molecular Dynamics Study. Journal of Chemical & Engineering Data, 2014, 59, 3080-3089.	1.0	23
50	Intrinsic αâ€helical and βâ€sheet conformational preferences: A computational case study of alanine. Protein Science, 2014, 23, 970-980.	3.1	18
51	Polyelectrolyte Decomplexation via Addition of Salt: Charge Correlation Driven Zipper. Journal of Physical Chemistry B, 2014, 118, 3226-3234.	1.2	35
52	Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. Soft Matter, 2013, 9, 2136.	1.2	32
53	The Conformational Ensembles of α-Synuclein and Tau: Combining Single-Molecule FRET and Simulations. Biophysical Journal, 2012, 103, 1940-1949.	0.2	119

MARIA SAMMALKORPI

#	Article	IF	CITATIONS
55	Simulations of Micellization of Sodium Hexyl Sulfate. Journal of Physical Chemistry B, 2011, 115, 1403-1410.	1.2	39
56	Formation and regulation of lipid microdomains in cell membranes: Theory, modeling, and speculation. FEBS Letters, 2010, 584, 1678-1684.	1.3	96
57	Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. Physical Review E, 2010, 81, 011908.	0.8	48
58	Lipid Microdomains: Structural Correlations, Fluctuations, and Formation Mechanisms. Physical Review Letters, 2010, 104, 118101.	2.9	29
59	Probing Structure and Dynamics of Lipid Microdomains with Tagged Proteins and Lipids: A Hybrid Particle-Continuum Simulation Approach. Biophysical Journal, 2010, 98, 230a.	0.2	Ο
60	lonic Surfactant Aggregates in Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl ₂). Journal of Physical Chemistry B, 2009, 113, 5863-5870.	1.2	199
61	Structure and Dynamics of Surfactant and Hydrocarbon Aggregates on Graphite: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2008, 112, 2915-2921.	1.2	44
62	Surfactant and Hydrocarbon Aggregates on Defective Graphite Surface: Structure and Dynamics. Journal of Physical Chemistry B, 2008, 112, 12954-12961.	1.2	31
63	Micelle Fission through Surface Instability and Formation of an Interdigitating Stalk. Journal of the American Chemical Society, 2008, 130, 17977-17980.	6.6	60
64	Domain Formation in the Plasma Membrane: Roles of Nonequilibrium Lipid Transport and Membrane Proteins. Physical Review Letters, 2008, 100, 178102.	2.9	37
65	Structural Properties of Ionic Detergent Aggregates:  A Large-Scale Molecular Dynamics Study of Sodium Dodecyl Sulfate. Journal of Physical Chemistry B, 2007, 111, 11722-11733.	1.2	178
66	Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 30-38.	1.4	36
67	Modeling a Spin-Labeled Fusion Peptide in a Membrane: Implications for the Interpretation of EPR Experiments. Biophysical Journal, 2007, 92, 10-22.	0.2	42
68	Self-assembly of sodium dodecyl sulfate: A simulation study of micellization. Chemistry and Physics of Lipids, 2007, 149, S87-S88.	1.5	1
69	Irradiation-induced stiffening of carbon nanotube bundles. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 142-145.	0.6	49
70	Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Physical Review B, 2004, 70, .	1.1	141
71	DYNAMICAL SIMULATIONS OF CARBON NANOTUBE BENDING. International Journal of Modern Physics C, 2004, 15, 517-534.	0.8	5
72	Mechanical properties of carbon nanotubes with vacancies and related defects. Physical Review B, 2004, 70, .	1.1	349

#	Article	IF	CITATIONS
73	Computational studies of carbon nanotube structures. Computer Physics Communications, 2002, 147, 91-96.	3.0	26
74	Carbon nanotube structures: molecular dynamics simulation at realistic limit. Computer Physics Communications, 2002, 146, 30-37.	3.0	46