Marlon Dumas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6820550/marlon-dumas-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

275 11,608 46 103 g-index

289 13,491 1.6 6.66

L-index

289 13,491 1.6
ext. papers ext. citations avg, IF

#	Paper	IF	Citations
275	Prescriptive Process Monitoring Under Resource Constraints: A Causal Inference Approach. <i>Lecture Notes in Business Information Processing</i> , 2022 , 180-193	0.6	3
274	Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements. <i>Data and Knowledge Engineering</i> , 2022 , 102013	1.5	2
273	Fire now, fire later: alarm-based systems for prescriptive process monitoring. <i>Knowledge and Information Systems</i> , 2022 , 64, 559-587	2.4	4
272	Data-Driven Analysis of Batch Processing Inefficiencies in Business Processes. <i>Lecture Notes in Business Information Processing</i> , 2022 , 231-247	0.6	
271	Learning Accurate Business Process Simulation Models from Event Logs via Automated Process Discovery and Deep Learning. <i>Lecture Notes in Computer Science</i> , 2022 , 55-71	0.9	2
270	Robotic Process Mining. Lecture Notes in Business Information Processing, 2022, 468-491	0.6	1
269	Encoding resource experience for predictive process monitoring. <i>Decision Support Systems</i> , 2021 , 1136	63 .6	1
268	Prescriptive Process Monitoring for Cost-Aware Cycle Time Reduction 2021,		5
267	Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study. <i>Business and Information Systems Engineering</i> , 2021 , 63, 511-527	3.8	12
266	Discovering data transfer routines from user interaction logs. <i>Information Systems</i> , 2021 , 101916	2.7	3
265	Discovering generative models from event logs: data-driven simulation vs deep learning. <i>PeerJ Computer Science</i> , 2021 , 7, e577	2.7	2
264	Robotic Process Mining: Vision and Challenges. <i>Business and Information Systems Engineering</i> , 2021 , 63, 301-314	3.8	35
263	Business process variant analysis: Survey and classification. <i>Knowledge-Based Systems</i> , 2021 , 211, 1065.	5 <i>7</i> 7.3	16
262	Prozessorientierte Informationssysteme 2021 , 399-432		
261	Fortgeschrittene Prozessmodellierung 2021 , 135-181		
260	Automated Discovery of Process Models with True Concurrency and Inclusive Choices. <i>Lecture Notes in Business Information Processing</i> , 2021 , 43-56	0.6	
259	BPM als Unternehmensffligkeit 2021 , 553-585		

(2020-2021)

Quantitative Prozessanalyse 2021, 299-346 258 Prozesserhebung **2021**, 183-247 257 EinfBrung in das GeschEtsprozessmanagement 2021, 1-38 256 1 Prozessimplementierung mit ausfürbaren Modellen 2021, 433-480 255 Prozessidentifikation 2021, 39-83 254 Adapting the CRISP-DM Data Mining Process: A Case Study in the Financial Services Domain. Lecture 0.6 253 Notes in Business Information Processing, 2021, 55-71 Optimization framework for DFG-based automated process discovery approaches. Software and 252 1.9 Systems Modeling, **2021**, 20, 1245-1270 Silhouetting the Cost-Time Front: Multi-objective Resource Optimization in Business Processes. 0.6 251 Lecture Notes in Business Information Processing, 2021, 92-108 ProzessBerwachung 2021, 481-551 250 Prozessverbesserung 2021, 347-397 249 Qualitative Prozessanalyse 2021, 249-297 248 Grundlagen der Geschatsprozessmodellierung 2021, 85-133 247 Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and 246 4.2 8 Scalable Approach. IEEE Transactions on Knowledge and Data Engineering, 2020, 1-1 Scalable alignment of process models and event logs: An approach based on automata and 6 245 2.7 S-components. Information Systems, 2020, 94, 101561 Automated discovery of business process simulation models from event logs. Decision Support 5.6 244 30 Systems, 2020, 134, 113284 Process Mining Meets Causal Machine Learning: Discovering Causal Rules from Event Logs 2020, 243 14 Identifying Candidate Routines for Robotic Process Automation from Unsegmented UI Logs 2020, 242 13 Verification of Privacy-Enhanced Collaborations 2020, 241 2

240	Discovering Business Process Simulation Models in the Presence of Multitasking. <i>Lecture Notes in Business Information Processing</i> , 2020 , 381-397	0.6	1
239	Adaptations of data mining methodologies: a systematic literature review. <i>PeerJ Computer Science</i> , 2020 , 6, e267	2.7	7
238	Automated discovery of declarative process models with correlated data conditions. <i>Information Systems</i> , 2020 , 89, 101482	2.7	13
237	Controlled flexibility in blockchain-based collaborative business processes. <i>Information Systems</i> , 2020 , 104, 101622	2.7	9
236	Structuring Business Process Management 2019 , 203-211		1
235	Blockchain Support for Collaborative Business Processes. <i>Informatik-Spektrum</i> , 2019 , 42, 182-190	0.3	28
234	Stage-based discovery of business process models from event logs. <i>Information Systems</i> , 2019 , 84, 214-	2 <u>3</u> . 7 /	6
233	Dynamic Role Binding in Blockchain-Based Collaborative Business Processes. <i>Lecture Notes in Computer Science</i> , 2019 , 399-414	0.9	17
232	Caterpillar: A business process execution engine on the Ethereum blockchain. <i>Software - Practice and Experience</i> , 2019 , 49, 1162	2.5	41
231	Semantic DMN: Formalizing and Reasoning About Decisions in the Presence of Background Knowledge. <i>Theory and Practice of Logic Programming</i> , 2019 , 19, 536-573	0.8	5
230	Local Concurrency Detection in Business Process Event Logs. <i>ACM Transactions on Internet Technology</i> , 2019 , 19, 1-23	3.8	5
229	Business Process Privacy Analysis in Pleak. <i>Lecture Notes in Computer Science</i> , 2019 , 306-312	0.9	3
228	Outcome-Oriented Predictive Process Monitoring. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2019 , 13, 1-57	4	88
227	Predicting process performance: A white-box approach based on process models. <i>Journal of Software: Evolution and Process</i> , 2019 , 31, e2170	1	10
226	Automated Discovery of Process Models from Event Logs: Review and Benchmark. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2019 , 31, 686-705	4.2	128
225	Split miner: automated discovery of accurate and simple business process models from event logs. <i>Knowledge and Information Systems</i> , 2019 , 59, 251-284	2.4	58
224	Survey and Cross-benchmark Comparison of Remaining Time Prediction Methods in Business Process Monitoring. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2019 , 10, 1-34	8	48
223	Business Process Privacy Analysis in Pleak. <i>Informatik-Spektrum</i> , 2019 , 42, 354-355	0.3	1

222	Disclosure Analysis of SQL Workflows. Lecture Notes in Computer Science, 2019, 51-70	0.9	1
221	Metaheuristic Optimization for Automated Business Process Discovery. <i>Lecture Notes in Computer Science</i> , 2019 , 268-285	0.9	3
220	Learning Accurate LSTM Models of Business Processes. Lecture Notes in Computer Science, 2019, 286-30)2 0.9	58
219	Discovering Automatable Routines from User Interaction Logs. <i>Lecture Notes in Business Information Processing</i> , 2019 , 144-162	0.6	15
218	Interpreted Execution of Business Process Models on Blockchain 2019,		16
217	Clustering-Based Predictive Process Monitoring. <i>IEEE Transactions on Services Computing</i> , 2019 , 12, 896	-94089	46
216	Blockchains for Business Process Management - Challenges and Opportunities. <i>ACM Transactions on Management Information Systems</i> , 2018 , 9, 1-16	2	246
215	Genetic algorithms for hyperparameter optimization in predictive business process monitoring. <i>Information Systems</i> , 2018 , 74, 67-83	2.7	33
214	Automated discovery of structured process models from event logs: The discover-and-structure approach. <i>Data and Knowledge Engineering</i> , 2018 , 117, 373-392	1.5	24
213	Semantics, Analysis and Simplification of DMN Decision Tables. <i>Information Systems</i> , 2018 , 78, 112-125	2.7	28
212	Process Monitoring 2018, 413-473		1
211	Process Identification 2018 , 35-73		
210	Essential Process Modeling 2018 , 75-115		
209	Process Discovery 2018 , 159-212		1
208	Quantitative Process Analysis 2018 , 255-296		
207	Complete and Interpretable Conformance Checking of Business Processes. <i>IEEE Transactions on Software Engineering</i> , 2018 , 44, 262-290	3.5	35
206	Discovering process maps from event streams 2018,		12
	A Petri Nets based Generic Genetic Algorithm framework for resource optimization in business		

204	Business Process Analytics: From Insights to Predictions. <i>Communications in Computer and Information Science</i> , 2018 , 15-20	0.3	
203	Fundamentals of Business Process Management 2018 ,		326
202	Business Process Event Logs and Visualization 2018 , 1-12		
201	Abstract-and-Compare: A Family of Scalable Precision Measures for Automated Process Discovery. Lecture Notes in Computer Science, 2018 , 158-175	0.9	9
200	Alarm-Based Prescriptive Process Monitoring. <i>Lecture Notes in Business Information Processing</i> , 2018 , 91-107	0.6	14
199	Correlating Activation and Target Conditions in Data-Aware Declarative Process Discovery. <i>Lecture Notes in Computer Science</i> , 2018 , 176-193	0.9	8
198	Multi-perspective Comparison of Business Process Variants Based on Event Logs. <i>Lecture Notes in Computer Science</i> , 2018 , 449-459	0.9	7
197	Temporal stability in predictive process monitoring. <i>Data Mining and Knowledge Discovery</i> , 2018 , 32, 13	0 6 : (133	381 ₇
196	Predictive Process Monitoring in Apromore. Lecture Notes in Business Information Processing, 2018, 244	-258	4
195	Business Process Variability Modeling. ACM Computing Surveys, 2017, 50, 1-45	13.4	71
195 194	Business Process Variability Modeling. <i>ACM Computing Surveys</i> , 2017 , 50, 1-45 Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017 , 130		7 ¹ 8 ₁
194	Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017 , 130		81
194	Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017 , 130 White-box prediction of process performance indicators via flow analysis 2017 , Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. <i>IEEE</i>	0-1.496	81
194 193 192	Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017 , 130 White-box prediction of process performance indicators via flow analysis 2017 , Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 2140-2154	0-1.496	81 10 35
194 193 192	Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017 , 130 White-box prediction of process performance indicators via flow analysis 2017 , Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 2140-2154 Structure and Evolution of Package Dependency Networks 2017 ,	0-1.496	81 10 35 45
194 193 192 191	Optimized Execution of Business Processes on Blockchain. <i>Lecture Notes in Computer Science</i> , 2017, 130 White-box prediction of process performance indicators via flow analysis 2017, Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017, 29, 2140-2154 Structure and Evolution of Package Dependency Networks 2017, 2017, Discovering Causal Factors Explaining Business Process Performance Variation. <i>Lecture Notes in</i>	4.2	81 10 35 45 31

(2016-2017)

186	Semantic DMN: Formalizing Decision Models with Domain Knowledge. <i>Lecture Notes in Computer Science</i> , 2017 , 70-86	0.9	6	
185	Scalable Conformance Checking of Business Processes. Lecture Notes in Computer Science, 2017, 607-6	270.9	17	
184	Interactive and Incremental Business Process Model Repair. <i>Lecture Notes in Computer Science</i> , 2017 , 53-74	0.9	22	
183	BPMN Miner: Automated discovery of BPMN process models with hierarchical structure. <i>Information Systems</i> , 2016 , 56, 284-303	2.7	46	
182	Homophilic network decomposition: a community-centric analysis of online social services. <i>Social Network Analysis and Mining</i> , 2016 , 6, 1	2.2	5	
181	Modeling Software Processes Using BPMN: When and When Not? 2016 , 165-183		2	
180	Predictive Business Process Monitoring Framework with Hyperparameter Optimization. <i>Lecture Notes in Computer Science</i> , 2016 , 361-376	0.9	28	
179	Predictive Business Process Monitoring with Structured and Unstructured Data. <i>Lecture Notes in Computer Science</i> , 2016 , 401-417	0.9	37	
178	On the expressive power of behavioral profiles. Formal Aspects of Computing, 2016, 28, 597-613	1.2	20	
177	Diagnosing behavioral differences between business process models: An approach based on event structures. <i>Information Systems</i> , 2016 , 56, 304-325	2.7	21	
176	Criteria and Heuristics for Business Process Model Decomposition. <i>Business and Information Systems Engineering</i> , 2016 , 58, 7-17	3.8	10	
175	Modelling families of business process variants: A decomposition driven method. <i>Information Systems</i> , 2016 , 56, 55-72	2.7	26	
174	Minimizing Overprocessing Waste in Business Processes via Predictive Activity Ordering. <i>Lecture Notes in Computer Science</i> , 2016 , 186-202	0.9	9	
173	Complex Symbolic Sequence Clustering and Multiple Classifiers for Predictive Process Monitoring. <i>Lecture Notes in Business Information Processing</i> , 2016 , 218-229	0.6	20	
172	Differential Privacy Analysis of Data Processing Workflows. <i>Lecture Notes in Computer Science</i> , 2016 , 62-79	0.9	4	
171	Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure. <i>Lecture Notes in Computer Science</i> , 2016 , 313-329	0.9	19	
170	On the Suitability of Generalized Behavioral Profiles for Process Model Comparison. <i>Lecture Notes in Computer Science</i> , 2016 , 13-28	0.9		
169	Browserbite: cross-browser testing via image processing. <i>Software - Practice and Experience</i> , 2016 , 46, 1459-1477	2.5	6	

168	Business Process Performance Mining with Staged Process Flows. <i>Lecture Notes in Computer Science</i> , 2016 , 167-185	0.9	12
167	Using dynamic and contextual features to predict issue lifetime in GitHub projects 2016,		24
166	Semantics and Analysis of DMN Decision Tables. Lecture Notes in Computer Science, 2016, 217-233	0.9	19
165	Declarative Process Modeling in BPMN. Lecture Notes in Computer Science, 2015, 84-100	0.9	29
164	Artifact Lifecycle Discovery. International Journal of Cooperative Information Systems, 2015, 24, 155000	10.6	38
163	Fast and Accurate Business Process Drift Detection. Lecture Notes in Computer Science, 2015, 406-422	0.9	36
162	Community-Based Prediction of Activity Change in Skype 2015 ,		1
161	Community-centric analysis of user engagement in Skype social network 2015 ,		9
160	Issue Dynamics in Github Projects. Lecture Notes in Computer Science, 2015, 295-310	0.9	5
159	From Business Process Models to Service Interfaces 2015 , 557-578		O
158	Detecting approximate clones in business process model repositories. <i>Information Systems</i> , 2015 , 49, 102-125	2.7	23
157	Enabling Process Innovation via Deviance Mining and Predictive Monitoring. <i>Management for Professionals</i> , 2015 , 145-154	0.4	6
156	Process Mining Reloaded: Event Structures as a Unified Representation of Process Models and Event Logs. <i>Lecture Notes in Computer Science</i> , 2015 , 33-48	0.9	16
155	Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes. <i>Lecture Notes in Computer Science</i> , 2015 , 297-313	0.9	67
154	Log Delta Analysis: Interpretable Differencing of Business Process Event Logs. <i>Lecture Notes in Computer Science</i> , 2015 , 386-405	0.9	30
153	The Rise of the Estonian Start-Up Sphere. <i>IT Professional</i> , 2014 , 16, 8-11	1.9	3
152	Heuristics for composite Web service decentralization. <i>Software and Systems Modeling</i> , 2014 , 13, 599-67	1 9 .9	14
151	Controlled automated discovery of collections of business process models. <i>Information Systems</i> , 2014 , 46, 85-101	2.7	19

(2013-2014)

150	Report: The Process Model Matching Contest 2013. <i>Lecture Notes in Business Information Processing</i> , 2014 , 442-463	0.6	29
149	Business Process Management Workshops. Lecture Notes in Business Information Processing, 2014,	0.6	4
148	Evaluation of trade-offs between workflow escalation strategies. <i>Concurrent Engineering Research and Applications</i> , 2014 , 22, 77-88	1.7	2
147	Cross-Browser Testing in Browserbite. Lecture Notes in Computer Science, 2014, 503-506	0.9	2
146	Analyzing Web Services Networks: Theory and Practice 2014 , 381-406		1
145	Behavioral Comparison of Process Models Based on Canonically Reduced Event Structures. <i>Lecture Notes in Computer Science</i> , 2014 , 267-282	0.9	19
144	Predictive Monitoring of Business Processes. Lecture Notes in Computer Science, 2014, 457-472	0.9	114
143	Beyond Tasks and Gateways: Discovering BPMN Models with Subprocesses, Boundary Events and Activity Markers. <i>Lecture Notes in Computer Science</i> , 2014 , 101-117	0.9	19
142	Mining Business Process Deviance: A Quest for Accuracy. Lecture Notes in Computer Science, 2014, 436-	4 45 9	29
141	Bursty egocentric network evolution in Skype. Social Network Analysis and Mining, 2013, 3, 1393-1401	2.2	7
140	Business Process Model Merging. <i>ACM Transactions on Software Engineering and Methodology</i> , 2013 , 22, 1-42	3.3	95
139	Decomposition Driven Consolidation of Process Models. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2013 , 193-207	0.3	8
138	Reverse-engineering conference rankings: what does it take to make a reputable conference?. <i>Scientometrics</i> , 2013 , 96, 651-665	3	6
137	Fundamentals of Business Process Management 2013,		561
136	Fast detection of exact clones in business process model repositories. <i>Information Systems</i> , 2013 , 38, 619-633	2.7	38
135	Process Discovery 2013 , 155-184		2
134	Quantitative Process Analysis 2013 , 213-251		1
133	From Petri Nets to Guard-Stage-Milestone Models. <i>Lecture Notes in Business Information Processing</i> , 2013 , 340-351	0.6	5

132	Discovering Data-Aware Declarative Process Models from Event Logs. <i>Lecture Notes in Computer Science</i> , 2013 , 81-96	0.9	43
131	A Short Survey on Process Model Similarity 2013 , 421-427		16
130	Browserbite: Accurate Cross-Browser Testing via Machine Learning over Image Features 2013,		12
129	Discovering Branching Conditions from Business Process Execution Logs. <i>Lecture Notes in Computer Science</i> , 2013 , 114-129	0.9	24
128	Slice, Mine and Dice: Complexity-Aware Automated Discovery of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2013 , 49-64	0.9	26
127	The Process Documentation Cube: A Model for Process Documentation Assessment. <i>Lecture Notes in Business Information Processing</i> , 2013 , 501-512	0.6	
126	Event Structures as a Foundation for Process Model Differencing, Part 1: Acyclic processes. <i>Lecture Notes in Computer Science</i> , 2013 , 69-86	0.9	2
125	Code churn estimation using organisational and code metrics: An experimental comparison. <i>Information and Software Technology</i> , 2012 , 54, 203-211	3.4	14
124	Management and engineering of process-aware information systems: Introduction to the special issue. <i>Information Systems</i> , 2012 , 37, 77-79	2.7	8
123	Structuring acyclic process models. <i>Information Systems</i> , 2012 , 37, 518-538	2.7	83
122	Generalized aggregate Quality of Service computation for composite services. <i>Journal of Systems and Software</i> , 2012 , 85, 1818-1830	3.3	23
121	Approximate Clone Detection in Repositories of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2012 , 302-318	0.9	23
120	Predicting Coding Effort in Projects Containing XML 2012 ,		3
119	Framework for monitoring and testing web application scalability on the cloud 2012 ,		12
118	Squeezing Out the Cloud via Profit-Maximizing Resource Allocation Policies 2012,		8
117	Process Mining Manifesto. Lecture Notes in Business Information Processing, 2012, 169-194	0.6	347
116	Consolidated Management of Business Process Variants. <i>Lecture Notes in Business Information Processing</i> , 2012 , 1-1	0.6	3
115	Identifying and Classifying Variations in Business Processes. <i>Lecture Notes in Business Information Processing</i> , 2012 , 136-150	0.6	8

114	Understanding Business Process Models: The Costs and Benefits of Structuredness. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2012 , 31-46	0.3	24
113	Evaluating Choreographies in BPMN 2.0 Using an Extended Quality Framework. <i>Lecture Notes in Business Information Processing</i> , 2011 , 103-117	0.6	13
112	APROMORE: An advanced process model repository. Expert Systems With Applications, 2011, 38, 7029-7	0/48	138
111	Predicting the maintainability of XSL transformations. Science of Computer Programming, 2011, 76, 116	1 <u>-11</u> 176	5 4
110	Reserved or On-Demand Instances? A Revenue Maximization Model for Cloud Providers 2011,		19
109	Configurable multi-perspective business process models. <i>Information Systems</i> , 2011 , 36, 313-340	2.7	127
108	Similarity of business process models: Metrics and evaluation. <i>Information Systems</i> , 2011 , 36, 498-516	2.7	372
107	Configurable SOAP proxy cache for data provisioning web services 2011 ,		1
106	Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs 2011,		36
105	Achieving Performance and Availability Guarantees with Spot Instances 2011,		62
104	Clone Detection in Repositories of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2011 , 248-264	0.9	25
103	On the Convergence of Data and Process Engineering. Lecture Notes in Computer Science, 2011 , 19-26	0.9	16
102	Designing Maintainable XML Transformations 2010 ,		1
101	Improving Web Service Survivability via Gracefully Degraded Substitution 2010,		1
100	Redundancy detection in service-oriented systems 2010,		2
99	Aggregate Quality of Service Computation for Composite Services. <i>Lecture Notes in Computer Science</i> , 2010 , 213-227	0.9	25
98	Merging Business Process Models. <i>Lecture Notes in Computer Science</i> , 2010 , 96-113	0.9	53
97	Towards a Formalization of Contracts for Service Substitution 2010 ,		4

96	Optimized decentralization of composite web services 2010,		11
95	Preserving correctness during business process model configuration. <i>Formal Aspects of Computing</i> , 2010 , 22, 459-482	1.2	78
94	A flexible, object-centric approach for business process modelling. <i>Service Oriented Computing and Applications</i> , 2010 , 4, 191-201	1.6	43
93	Service-Enabled Process Management 2010 , 441-460		5
92	The Business Process Modeling Notation 2010 , 347-368		5
91	Structuring Acyclic Process Models. <i>Lecture Notes in Computer Science</i> , 2010 , 276-293	0.9	42
90	Unraveling Unstructured Process Models. Lecture Notes in Business Information Processing, 2010, 1-7	0.6	16
89	Managing Process Model Collections with AProMoRe. Lecture Notes in Computer Science, 2010, 699-701	0.9	5
88	From business process models to process-oriented software systems. <i>ACM Transactions on Software Engineering and Methodology</i> , 2009 , 19, 1-37	3.3	126
87	Dimensions of coupling in middleware. Concurrency Computation Practice and Experience, 2009, 21, 2233	3124269	6
86	Questionnaire-based variability modeling for system configuration. <i>Software and Systems Modeling</i> , 2009 , 8, 251-274	1.9	101
85	Graph Matching Algorithms for Business Process Model Similarity Search. <i>Lecture Notes in Computer Science</i> , 2009 , 48-63	0.9	169
84	Aligning Business Process Models 2009 ,		55
83	Modelling Flexible Processes with Business Objects 2009 ,		22
82	Cost-Effective Semantic Annotation of XML Schemas and Web Service Interfaces 2009,		14
81	Simulation-Based Evaluation of Workflow Escalation Strategies 2009,		4
80	Modeling Business Process Variability for Design-Time Configuration 2009 , 204-228		25
79	Detecting Behavioural Incompatibilities between Pairs of Services. <i>Lecture Notes in Computer Science</i> , 2009 , 79-90	0.9	

78	Toward Web-Scale Workflows for Film Production. <i>IEEE Internet Computing</i> , 2008 , 12, 53-61	2.4	12
77	The Service Adaptation Machine 2008 ,		12
76	Bridging Global and Local Models of Service-Oriented Systems. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2008 , 38, 302-318		15
75	Generating Business Process Models from Object Behavior Models. <i>Information Systems Management</i> , 2008 , 25, 319-331	3.1	13
74	Conformance checking of service behavior. ACM Transactions on Internet Technology, 2008, 8, 1-30	3.8	62
73	Using CEP technology to adapt messages exchanged by web services 2008,		6
72	Pattern-Based Translation of BPMN Process Models to BPEL Web Services. <i>International Journal of Web Services Research</i> , 2008 , 5, 42-62	0.8	78
71	Semantics and analysis of business process models in BPMN. <i>Information and Software Technology</i> , 2008 , 50, 1281-1294	3.4	416
7°	BESERIAL: Behavioural Service Interface Analyser. Lecture Notes in Computer Science, 2008, 374-377	0.9	4
69	Transforming Object-Oriented Models to Process-Oriented Models. <i>Lecture Notes in Computer Science</i> , 2008 , 132-143	0.9	28
68	Linking Domain Models and Process Models for Reference Model Configuration. <i>Lecture Notes in Computer Science</i> , 2008 , 417-430	0.9	11
67	Business Process Simulation for Operational Decision Support. <i>Lecture Notes in Computer Science</i> , 2008 , 66-77	0.9	27
66	Correctness-Preserving Configuration of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2008 , 46-61	0.9	30
65	Beyond Control-Flow: Extending Business Process Configuration to Roles and Objects. <i>Lecture Notes in Computer Science</i> , 2008 , 199-215	0.9	48
64	A process-based methodology for designing event-based mobile composite applications. <i>Data and Knowledge Engineering</i> , 2007 , 61, 6-22	1.5	11
63	Formal semantics and analysis of control flow in WS-BPEL. <i>Science of Computer Programming</i> , 2007 , 67, 162-198	1.1	183
62	Deadline-based escalation in process-aware information systems. <i>Decision Support Systems</i> , 2007 , 43, 492-511	5.6	109
61	Strategies in supply chain management for the Trading Agent Competition. <i>Electronic Commerce Research and Applications</i> , 2007 , 6, 369-382	4.6	4

60	Specification and execution of composite trading activities. <i>Electronic Commerce Research</i> , 2007 , 7, 221	-26B	3
59	Correlation Patterns in Service-Oriented Architectures 2007 , 245-259		44
58	Communication Abstractions for Distributed Business Processes. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2007 , 409-423	0.3	5
57	Questionnaire-driven Configuration of Reference Process Models. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2007 , 424-438	0.3	40
56	Semantics of Standard Process Models with OR-Joins 2007 , 41-58		19
55	Enforcing Policies and Guidelines in Web Portals: A Case Study 2007 , 154-165		4
54	The Rise of Web Service Ecosystems. <i>IT Professional</i> , 2006 , 8, 31-37	1.9	136
53	From BPMN Process Models to BPEL Web Services 2006 ,		75
52	Service Interaction Modeling: Bridging Global and Local Views. 2006 10th IEEE International Enterprise Distributed Object Computing Conference (EDOCi06), 2006,		34
51	Process-Oriented Assessment of Web Services. <i>International Journal of E-Business Research</i> , 2006 , 2, 19	- <i>4</i> -4-7	8
		-о г/	
50	Standards for Web Service Choreography and Orchestration: Status and Perspectives. <i>Lecture Notes in Computer Science</i> , 2006 , 61-74	0.9	33
50		<i>,</i>	
	in Computer Science, 2006 , 61-74 GPSL: A Programming Language for Service Implementation. <i>Lecture Notes in Computer Science</i> ,	0.9	
49	in Computer Science, 2006, 61-74 GPSL: A Programming Language for Service Implementation. Lecture Notes in Computer Science, 2006, 3-17 Translating Standard Process Models to BPEL. Notes on Numerical Fluid Mechanics and	0.9	33
49	in Computer Science, 2006, 61-74 GPSL: A Programming Language for Service Implementation. Lecture Notes in Computer Science, 2006, 3-17 Translating Standard Process Models to BPEL. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, 417-432	0.9	33 3 34
49 48 47	 in Computer Science, 2006, 61-74 GPSL: A Programming Language for Service Implementation. Lecture Notes in Computer Science, 2006, 3-17 Translating Standard Process Models to BPEL. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, 417-432 Execution Semantics for Service Choreographies. Lecture Notes in Computer Science, 2006, 163-177 Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation. Lecture Notes in 	0.9 0.9 0.3 0.9	33 3 34 18
49 48 47 46	in Computer Science, 2006, 61-74 GPSL: A Programming Language for Service Implementation. Lecture Notes in Computer Science, 2006, 3-17 Translating Standard Process Models to BPEL. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, 417-432 Execution Semantics for Service Choreographies. Lecture Notes in Computer Science, 2006, 163-177 Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation. Lecture Notes in Computer Science, 2006, 65-80	0.9 0.9 0.3 0.9	33 3 34 18

(2004-2005)

42	WofBPEL: A Tool for Automated Analysis of BPEL Processes. <i>Lecture Notes in Computer Science</i> , 2005 , 484-489	0.9	40
41	Patterns of Process Modeling 2005 , 179-203		16
40	Middleware support for mobile applications. <i>International Journal of Pervasive Computing and Communications</i> , 2005 , 1, 75-88	3.3	6
39	Orchestrating interrelated trading activities. <i>International Journal of Business Process Integration and Management</i> , 2005 , 1, 12	0.8	2
38	Facilitating the Rapid Development and Scalable Orchestration of Composite Web Services. <i>Distributed and Parallel Databases</i> , 2005 , 17, 5-37	0.9	81
37	Probabilistic Automated Bidding in Multiple Auctions. <i>Electronic Commerce Research</i> , 2005 , 5, 25-49	2.1	18
36	Experience Using a Coordination-Based Architecture for Adaptive Web Content Provision. <i>Lecture Notes in Computer Science</i> , 2005 , 140-156	0.9	
35	2005,		430
34	Pattern-Based Analysis of the Control-Flow Perspective of UML Activity Diagrams. <i>Lecture Notes in Computer Science</i> , 2005 , 63-78	0.9	21
33	Programming and Compiling Web Services in GPSL. Lecture Notes in Computer Science, 2005, 508-513	0.9	1
32	Event-Based Coordination of Process-Oriented Composite Applications. <i>Lecture Notes in Computer Science</i> , 2005 , 236-251	0.9	9
31	On the Notion of Coupling in Communication Middleware. Lecture Notes in Computer Science, 2005, 10	15:1;03	36
30	SERVICE-ORIENTED DESIGN: A MULTI-VIEWPOINT APPROACH. <i>International Journal of Cooperative Information Systems</i> , 2004 , 13, 337-368	0.6	105
29	A configurable matchmaking framework for electronic marketplaces. <i>Electronic Commerce Research and Applications</i> , 2004 , 3, 95-106	4.6	10
28	Design and Implementation of the YAWL System. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2004 , 142-159	0.3	72
27	TEMPOS: a platform for developing temporal applications on top of object DBMS. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2004 , 16, 357-377	4.2	3
26	QoS-aware middleware for Web services composition. <i>IEEE Transactions on Software Engineering</i> , 2004 , 30, 311-327	3.5	1755
25	The 3DMA Middleware for Mobile Applications. <i>Lecture Notes in Computer Science</i> , 2004 , 312-323	0.9	4

24	Scaling Dynamic Web Content Provision Using Elapsed-Time-Based Content Degradation. <i>Lecture Notes in Computer Science</i> , 2004 , 559-571	0.9	2
23	Enabling Personalized Composition and Adaptive Provisioning of Web Services. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2004 , 322-337	0.3	15
22	A model for the configurable composition and synchronization of complex trading activities 2003,		3
21	Analysis of Web Services Composition Languages: The Case of BPEL4WS. <i>Lecture Notes in Computer Science</i> , 2003 , 200-215	0.9	96
20	Quality driven web services composition 2003,		599
19	The Self-Serv environment for Web services composition. <i>IEEE Internet Computing</i> , 2003 , 7, 40-48	2.4	305
18	Web service composition languages: old wine in New bottles? 2003,		23
17	Semantic Issues in E-Commerce Systems. <i>IFIP Advances in Information and Communication Technology</i> , 2003 ,	0.5	1
16	Varying Resource Consumption to Achieve Scalable Web Services. <i>Lecture Notes in Computer Science</i> , 2003 , 179-190	0.9	1
15	Towards a Semantic Framework for Service Description. <i>IFIP Advances in Information and Communication Technology</i> , 2003 , 277-291	0.5	6
14	A formal approach to negotiating agents development. <i>Electronic Commerce Research and Applications</i> , 2002 , 1, 193-207	4.6	31
13	A Sequence-Based Object-Oriented Model for Video Databases. <i>Multimedia Tools and Applications</i> , 2002 , 18, 249-277	2.5	2
12	A probabilistic approach to automated bidding in alternative auctions 2002,		8
11	Self-serv 2002 , 1051-1054		45
10	Collecting and Querying Distributed Traces of Composite Service Executions. <i>Lecture Notes in Computer Science</i> , 2002 , 373-390	0.9	2
9	A formal approach to protocols and strategies for (legal) negotiation 2001,		19
8	UML Activity Diagrams as a Workflow Specification Language. <i>Lecture Notes in Computer Science</i> , 2001 , 76-90	0.9	113
7	Pointwise Temporal Object Database Browsing. <i>Lecture Notes in Computer Science</i> , 2001 , 170-184	0.9	2

LIST OF PUBLICATIONS

6	Peer-to-Peer Traced Execution of Composite Services. <i>Lecture Notes in Computer Science</i> , 2001 , 103-117 of the composite Services.	0.9	12
5	PhDOOS 2000: The 10th Ph.D. Workshop on Object-Oriented Systems. <i>Lecture Notes in Computer Science</i> , 2000 , 78-92	0.9	
4	Specification of composite trading activities in supply chain management		1
3	Business Process Graphs. Advances in Data Mining and Database Management Book Series,421-437	0.6	1
2	Multi-level privacy analysis of business processes: the Pleak toolset. <i>International Journal on Software Tools for Technology Transfer</i> ,1	1.3	
1	Process-Oriented Assessment of Web Services269-293		