Marlon Dumas

List of Publications by Citations

Source: https://exaly.com/author-pdf/6820550/marlon-dumas-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

275 papers

11,608 citations

46 h-index

103 g-index

289 ext. papers

13,491 ext. citations

1.6 avg, IF

6.66 L-index

#	Paper	IF	Citations
275	QoS-aware middleware for Web services composition. <i>IEEE Transactions on Software Engineering</i> , 2004 , 30, 311-327	3.5	1755
274	Quality driven web services composition 2003,		599
273	Fundamentals of Business Process Management 2013 ,		561
272	2005,		430
271	Semantics and analysis of business process models in BPMN. <i>Information and Software Technology</i> , 2008 , 50, 1281-1294	3.4	416
270	Similarity of business process models: Metrics and evaluation. <i>Information Systems</i> , 2011 , 36, 498-516	2.7	372
269	Process Mining Manifesto. Lecture Notes in Business Information Processing, 2012, 169-194	0.6	347
268	Fundamentals of Business Process Management 2018,		326
267	The Self-Serv environment for Web services composition. <i>IEEE Internet Computing</i> , 2003 , 7, 40-48	2.4	305
266	Blockchains for Business Process Management - Challenges and Opportunities. <i>ACM Transactions on Management Information Systems</i> , 2018 , 9, 1-16	2	246
265	Formal semantics and analysis of control flow in WS-BPEL. <i>Science of Computer Programming</i> , 2007 , 67, 162-198	1.1	183
264	Graph Matching Algorithms for Business Process Model Similarity Search. <i>Lecture Notes in Computer Science</i> , 2009 , 48-63	0.9	169
263	Predictive Business Process Monitoring with LSTM Neural Networks. <i>Lecture Notes in Computer Science</i> , 2017 , 477-492	0.9	167
262	Service Interaction Patterns. <i>Lecture Notes in Computer Science</i> , 2005 , 302-318	0.9	145
261	APROMORE: An advanced process model repository. Expert Systems With Applications, 2011 , 38, 7029-	70⁄48	138
260	The Rise of Web Service Ecosystems. <i>IT Professional</i> , 2006 , 8, 31-37	1.9	136
259	Automated Discovery of Process Models from Event Logs: Review and Benchmark. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2019 , 31, 686-705	4.2	128

258	Configurable multi-perspective business process models. <i>Information Systems</i> , 2011 , 36, 313-340	2.7	127
257	From business process models to process-oriented software systems. <i>ACM Transactions on Software Engineering and Methodology</i> , 2009 , 19, 1-37	3.3	126
256	Predictive Monitoring of Business Processes. Lecture Notes in Computer Science, 2014, 457-472	0.9	114
255	UML Activity Diagrams as a Workflow Specification Language. <i>Lecture Notes in Computer Science</i> , 2001 , 76-90	0.9	113
254	Deadline-based escalation in process-aware information systems. <i>Decision Support Systems</i> , 2007 , 43, 492-511	5.6	109
253	SERVICE-ORIENTED DESIGN: A MULTI-VIEWPOINT APPROACH. <i>International Journal of Cooperative Information Systems</i> , 2004 , 13, 337-368	0.6	105
252	Questionnaire-based variability modeling for system configuration. <i>Software and Systems Modeling</i> , 2009 , 8, 251-274	1.9	101
251	Analysis of Web Services Composition Languages: The Case of BPEL4WS. <i>Lecture Notes in Computer Science</i> , 2003 , 200-215	0.9	96
250	Business Process Model Merging. <i>ACM Transactions on Software Engineering and Methodology</i> , 2013 , 22, 1-42	3.3	95
249	Outcome-Oriented Predictive Process Monitoring. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2019 , 13, 1-57	4	88
248	Structuring acyclic process models. <i>Information Systems</i> , 2012 , 37, 518-538	2.7	83
247	Optimized Execution of Business Processes on Blockchain. Lecture Notes in Computer Science, 2017, 13	30-11 <u>.4</u> 96	81
246	Facilitating the Rapid Development and Scalable Orchestration of Composite Web Services. <i>Distributed and Parallel Databases</i> , 2005 , 17, 5-37	0.9	81
245	Preserving correctness during business process model configuration. <i>Formal Aspects of Computing</i> , 2010 , 22, 459-482	1.2	78
244	Pattern-Based Translation of BPMN Process Models to BPEL Web Services. <i>International Journal of Web Services Research</i> , 2008 , 5, 42-62	0.8	78
243	From BPMN Process Models to BPEL Web Services 2006 ,		75
242	Design and Implementation of the YAWL System. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2004 , 142-159	0.3	72
241	Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation. <i>Lecture Notes in Computer Science</i> , 2006 , 65-80	0.9	72

240	Business Process Variability Modeling. ACM Computing Surveys, 2017, 50, 1-45	13.4	71
239	Let Dance: A Language for Service Behavior Modeling. Lecture Notes in Computer Science, 2006, 145-16.	2 5.9	7°
238	Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes. <i>Lecture Notes in Computer Science</i> , 2015 , 297-313	0.9	67
237	Achieving Performance and Availability Guarantees with Spot Instances 2011,		62
236	Conformance checking of service behavior. ACM Transactions on Internet Technology, 2008, 8, 1-30	3.8	62
235	Split miner: automated discovery of accurate and simple business process models from event logs. <i>Knowledge and Information Systems</i> , 2019 , 59, 251-284	2.4	58
234	Learning Accurate LSTM Models of Business Processes. Lecture Notes in Computer Science, 2019, 286-302	2 6.9	58
233	Aligning Business Process Models 2009 ,		55
232	Merging Business Process Models. Lecture Notes in Computer Science, 2010, 96-113	0.9	53
231	Survey and Cross-benchmark Comparison of Remaining Time Prediction Methods in Business Process Monitoring. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2019 , 10, 1-34	8	48
230	Beyond Control-Flow: Extending Business Process Configuration to Roles and Objects. <i>Lecture Notes in Computer Science</i> , 2008 , 199-215	0.9	48
229	BPMN Miner: Automated discovery of BPMN process models with hierarchical structure. <i>Information Systems</i> , 2016 , 56, 284-303	2.7	46
228	Clustering-Based Predictive Process Monitoring. IEEE Transactions on Services Computing, 2019, 12, 896-	4 09	46
227	Structure and Evolution of Package Dependency Networks 2017 ,		45
226	Self-serv 2002 , 1051-1054		45
225	Correlation Patterns in Service-Oriented Architectures 2007 , 245-259		44
224	Discovering Data-Aware Declarative Process Models from Event Logs. <i>Lecture Notes in Computer Science</i> , 2013 , 81-96	0.9	43
223	A flexible, object-centric approach for business process modelling. <i>Service Oriented Computing and Applications</i> , 2010 , 4, 191-201	1.6	43

(2002-2010)

222	Structuring Acyclic Process Models. Lecture Notes in Computer Science, 2010, 276-293	0.9	42
221	Caterpillar: A business process execution engine on the Ethereum blockchain. <i>Software - Practice and Experience</i> , 2019 , 49, 1162	2.5	41
220	WofBPEL: A Tool for Automated Analysis of BPEL Processes. <i>Lecture Notes in Computer Science</i> , 2005 , 484-489	0.9	40
219	Questionnaire-driven Configuration of Reference Process Models. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2007 , 424-438	0.3	40
218	Artifact Lifecycle Discovery. International Journal of Cooperative Information Systems, 2015, 24, 155000	10.6	38
217	Fast detection of exact clones in business process model repositories. <i>Information Systems</i> , 2013 , 38, 619-633	2.7	38
216	Predictive Business Process Monitoring with Structured and Unstructured Data. <i>Lecture Notes in Computer Science</i> , 2016 , 401-417	0.9	37
215	Fast and Accurate Business Process Drift Detection. Lecture Notes in Computer Science, 2015, 406-422	0.9	36
214	Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs 2011,		36
213	Complete and Interpretable Conformance Checking of Business Processes. <i>IEEE Transactions on Software Engineering</i> , 2018 , 44, 262-290	3.5	35
212	Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 2140-2154	4.2	35
211	Robotic Process Mining: Vision and Challenges. <i>Business and Information Systems Engineering</i> , 2021 , 63, 301-314	3.8	35
210	Service Interaction Modeling: Bridging Global and Local Views. 2006 10th IEEE International Enterprise Distributed Object Computing Conference (EDOCi06), 2006,		34
209	Translating Standard Process Models to BPEL. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2006 , 417-432	0.3	34
208	Genetic algorithms for hyperparameter optimization in predictive business process monitoring. <i>Information Systems</i> , 2018 , 74, 67-83	2.7	33
207	Standards for Web Service Choreography and Orchestration: Status and Perspectives. <i>Lecture Notes in Computer Science</i> , 2006 , 61-74	0.9	33
206	2017,		31
205	A formal approach to negotiating agents development. <i>Electronic Commerce Research and Applications</i> , 2002 , 1, 193-207	4.6	31

204	Automated discovery of business process simulation models from event logs. <i>Decision Support Systems</i> , 2020 , 134, 113284	5.6	30
203	Log Delta Analysis: Interpretable Differencing of Business Process Event Logs. <i>Lecture Notes in Computer Science</i> , 2015 , 386-405	0.9	30
202	Correctness-Preserving Configuration of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2008 , 46-61	0.9	30
201	Declarative Process Modeling in BPMN. Lecture Notes in Computer Science, 2015, 84-100	0.9	29
200	Report: The Process Model Matching Contest 2013. <i>Lecture Notes in Business Information Processing</i> , 2014 , 442-463	0.6	29
199	Mining Business Process Deviance: A Quest for Accuracy. Lecture Notes in Computer Science, 2014, 436-4	4 45 9	29
198	Blockchain Support for Collaborative Business Processes. <i>Informatik-Spektrum</i> , 2019 , 42, 182-190	0.3	28
197	Semantics, Analysis and Simplification of DMN Decision Tables. <i>Information Systems</i> , 2018 , 78, 112-125	2.7	28
196	Predictive Business Process Monitoring Framework with Hyperparameter Optimization. <i>Lecture Notes in Computer Science</i> , 2016 , 361-376	0.9	28
195	Transforming Object-Oriented Models to Process-Oriented Models. <i>Lecture Notes in Computer Science</i> , 2008 , 132-143	0.9	28
194	Business Process Simulation for Operational Decision Support. <i>Lecture Notes in Computer Science</i> , 2008 , 66-77	0.9	27
193	Modelling families of business process variants: A decomposition driven method. <i>Information Systems</i> , 2016 , 56, 55-72	2.7	26
192	Slice, Mine and Dice: Complexity-Aware Automated Discovery of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2013 , 49-64	0.9	26
191	Aggregate Quality of Service Computation for Composite Services. <i>Lecture Notes in Computer Science</i> , 2010 , 213-227	0.9	25
190	Modeling Business Process Variability for Design-Time Configuration 2009 , 204-228		25
189	Clone Detection in Repositories of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2011 , 248-264	0.9	25
188	Automated discovery of structured process models from event logs: The discover-and-structure approach. <i>Data and Knowledge Engineering</i> , 2018 , 117, 373-392	1.5	24
187	Understanding Business Process Models: The Costs and Benefits of Structuredness. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2012 , 31-46	0.3	24

(2014-2013)

186	Discovering Branching Conditions from Business Process Execution Logs. <i>Lecture Notes in Computer Science</i> , 2013 , 114-129	0.9	24	
185	Using dynamic and contextual features to predict issue lifetime in GitHub projects 2016 ,		24	
184	Generalized aggregate Quality of Service computation for composite services. <i>Journal of Systems and Software</i> , 2012 , 85, 1818-1830	3.3	23	
183	Detecting approximate clones in business process model repositories. <i>Information Systems</i> , 2015 , 49, 102-125	2.7	23	
182	Approximate Clone Detection in Repositories of Business Process Models. <i>Lecture Notes in Computer Science</i> , 2012 , 302-318	0.9	23	
181	Web service composition languages: old wine in New bottles? 2003,		23	
180	Modelling Flexible Processes with Business Objects 2009 ,		22	
179	Interactive and Incremental Business Process Model Repair. <i>Lecture Notes in Computer Science</i> , 2017 , 53-74	0.9	22	
178	Diagnosing behavioral differences between business process models: An approach based on event structures. <i>Information Systems</i> , 2016 , 56, 304-325	2.7	21	
177	Pattern-Based Analysis of the Control-Flow Perspective of UML Activity Diagrams. <i>Lecture Notes in Computer Science</i> , 2005 , 63-78	0.9	21	
176	Discovering Causal Factors Explaining Business Process Performance Variation. <i>Lecture Notes in Computer Science</i> , 2017 , 177-192	0.9	21	
175	On the expressive power of behavioral profiles. Formal Aspects of Computing, 2016, 28, 597-613	1.2	20	
174	Complex Symbolic Sequence Clustering and Multiple Classifiers for Predictive Process Monitoring. Lecture Notes in Business Information Processing, 2016 , 218-229	0.6	20	
173	Controlled automated discovery of collections of business process models. <i>Information Systems</i> , 2014 , 46, 85-101	2.7	19	
172	Behavioral Comparison of Process Models Based on Canonically Reduced Event Structures. <i>Lecture Notes in Computer Science</i> , 2014 , 267-282	0.9	19	
171	Reserved or On-Demand Instances? A Revenue Maximization Model for Cloud Providers 2011 ,		19	
170	A formal approach to protocols and strategies for (legal) negotiation 2001,		19	
169	Beyond Tasks and Gateways: Discovering BPMN Models with Subprocesses, Boundary Events and Activity Markers. <i>Lecture Notes in Computer Science</i> , 2014 , 101-117	0.9	19	

168	Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure. <i>Lecture Notes in Computer Science</i> , 2016 , 313-329	0.9	19
167	Semantics of Standard Process Models with OR-Joins 2007 , 41-58		19
166	Semantics and Analysis of DMN Decision Tables. Lecture Notes in Computer Science, 2016, 217-233	0.9	19
165	Probabilistic Automated Bidding in Multiple Auctions. <i>Electronic Commerce Research</i> , 2005 , 5, 25-49	2.1	18
164	Execution Semantics for Service Choreographies. <i>Lecture Notes in Computer Science</i> , 2006 , 163-177	0.9	18
163	Dynamic Role Binding in Blockchain-Based Collaborative Business Processes. <i>Lecture Notes in Computer Science</i> , 2019 , 399-414	0.9	17
162	Scalable Conformance Checking of Business Processes. Lecture Notes in Computer Science, 2017, 607-62	7 6.9	17
161	Temporal stability in predictive process monitoring. Data Mining and Knowledge Discovery, 2018, 32, 130	0 6 :d 33	881 <i>7</i>
160	A Short Survey on Process Model Similarity 2013 , 421-427		16
159	Handling Transactional Properties in Web Service Composition. <i>Lecture Notes in Computer Science</i> , 2005 , 273-289	0.9	16
158	Patterns of Process Modeling 2005 , 179-203		16
157	Process Mining Reloaded: Event Structures as a Unified Representation of Process Models and Event Logs. <i>Lecture Notes in Computer Science</i> , 2015 , 33-48	0.9	16
156	Unraveling Unstructured Process Models. Lecture Notes in Business Information Processing, 2010, 1-7	0.6	16
155	On the Convergence of Data and Process Engineering. Lecture Notes in Computer Science, 2011, 19-26	0.9	16
154	Interpreted Execution of Business Process Models on Blockchain 2019,		16
153	Business process variant analysis: Survey and classification. <i>Knowledge-Based Systems</i> , 2021 , 211, 10655	7.3	16
152	Bridging Global and Local Models of Service-Oriented Systems. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2008 , 38, 302-318		15
151	Discovering Automatable Routines from User Interaction Logs. <i>Lecture Notes in Business Information Processing</i> , 2019 , 144-162	0.6	15

(2001-2004)

150	Enabling Personalized Composition and Adaptive Provisioning of Web Services. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2004 , 322-337	0.3	15	
149	Heuristics for composite Web service decentralization. <i>Software and Systems Modeling</i> , 2014 , 13, 599-61	1 9 .9	14	
148	Code churn estimation using organisational and code metrics: An experimental comparison. <i>Information and Software Technology</i> , 2012 , 54, 203-211	3.4	14	
147	Cost-Effective Semantic Annotation of XML Schemas and Web Service Interfaces 2009,		14	
146	Process Mining Meets Causal Machine Learning: Discovering Causal Rules from Event Logs 2020,		14	
145	Alarm-Based Prescriptive Process Monitoring. <i>Lecture Notes in Business Information Processing</i> , 2018 , 91-107	0.6	14	
144	Evaluating Choreographies in BPMN 2.0 Using an Extended Quality Framework. <i>Lecture Notes in Business Information Processing</i> , 2011 , 103-117	0.6	13	
143	Generating Business Process Models from Object Behavior Models. <i>Information Systems Management</i> , 2008 , 25, 319-331	3.1	13	
142	Identifying Candidate Routines for Robotic Process Automation from Unsegmented UI Logs 2020,		13	
141	Automated discovery of declarative process models with correlated data conditions. <i>Information Systems</i> , 2020 , 89, 101482	2.7	13	
140	Discovering process maps from event streams 2018,		12	
139	Framework for monitoring and testing web application scalability on the cloud 2012 ,		12	
138	Browserbite: Accurate Cross-Browser Testing via Machine Learning over Image Features 2013,		12	
137	Toward Web-Scale Workflows for Film Production. <i>IEEE Internet Computing</i> , 2008 , 12, 53-61	2.4	12	
136	The Service Adaptation Machine 2008 ,		12	
135	Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study. <i>Business and Information Systems Engineering</i> , 2021 , 63, 511-527	3.8	12	
134	Business Process Performance Mining with Staged Process Flows. <i>Lecture Notes in Computer Science</i> , 2016 , 167-185	0.9	12	
133	Peer-to-Peer Traced Execution of Composite Services. <i>Lecture Notes in Computer Science</i> , 2001 , 103-117	0.9	12	

132	Optimized decentralization of composite web services 2010,		11
131	A process-based methodology for designing event-based mobile composite applications. <i>Data and Knowledge Engineering</i> , 2007 , 61, 6-22	1.5	11
130	Linking Domain Models and Process Models for Reference Model Configuration. <i>Lecture Notes in Computer Science</i> , 2008 , 417-430	0.9	11
129	Predicting process performance: A white-box approach based on process models. <i>Journal of Software: Evolution and Process</i> , 2019 , 31, e2170	1	10
128	Criteria and Heuristics for Business Process Model Decomposition. <i>Business and Information Systems Engineering</i> , 2016 , 58, 7-17	3.8	10
127	A Petri Nets based Generic Genetic Algorithm framework for resource optimization in business processes. <i>Simulation Modelling Practice and Theory</i> , 2018 , 86, 72-101	3.9	10
126	White-box prediction of process performance indicators via flow analysis 2017,		10
125	A configurable matchmaking framework for electronic marketplaces. <i>Electronic Commerce Research and Applications</i> , 2004 , 3, 95-106	4.6	10
124	Community-centric analysis of user engagement in Skype social network 2015,		9
123	Minimizing Overprocessing Waste in Business Processes via Predictive Activity Ordering. <i>Lecture Notes in Computer Science</i> , 2016 , 186-202	0.9	9
122	Abstract-and-Compare: A Family of Scalable Precision Measures for Automated Process Discovery. Lecture Notes in Computer Science, 2018 , 158-175	0.9	9
121	Controlled flexibility in blockchain-based collaborative business processes. <i>Information Systems</i> , 2020 , 104, 101622	2.7	9
120	Event-Based Coordination of Process-Oriented Composite Applications. <i>Lecture Notes in Computer Science</i> , 2005 , 236-251	0.9	9
119	Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and Scalable Approach. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 1-1	4.2	8
118	Management and engineering of process-aware information systems: Introduction to the special issue. <i>Information Systems</i> , 2012 , 37, 77-79	2.7	8
117	Decomposition Driven Consolidation of Process Models. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2013 , 193-207	0.3	8
116	Squeezing Out the Cloud via Profit-Maximizing Resource Allocation Policies 2012,		8
115	A probabilistic approach to automated bidding in alternative auctions 2002 ,		8

114	Process-Oriented Assessment of Web Services. International Journal of E-Business Research, 2006, 2, 19	- 44 7	8
113	Identifying and Classifying Variations in Business Processes. <i>Lecture Notes in Business Information Processing</i> , 2012 , 136-150	0.6	8
112	Correlating Activation and Target Conditions in Data-Aware Declarative Process Discovery. <i>Lecture Notes in Computer Science</i> , 2018 , 176-193	0.9	8
111	Bursty egocentric network evolution in Skype. Social Network Analysis and Mining, 2013, 3, 1393-1401	2.2	7
110	Adaptations of data mining methodologies: a systematic literature review. <i>PeerJ Computer Science</i> , 2020 , 6, e267	2.7	7
109	Multi-perspective Comparison of Business Process Variants Based on Event Logs. <i>Lecture Notes in Computer Science</i> , 2018 , 449-459	0.9	7
108	Stage-based discovery of business process models from event logs. <i>Information Systems</i> , 2019 , 84, 214-	2 3 . 7 /	6
107	Scalable alignment of process models and event logs: An approach based on automata and S-components. <i>Information Systems</i> , 2020 , 94, 101561	2.7	6
106	Reverse-engineering conference rankings: what does it take to make a reputable conference?. <i>Scientometrics</i> , 2013 , 96, 651-665	3	6
105	Dimensions of coupling in middleware. Concurrency Computation Practice and Experience, 2009, 21, 223	3-12-2-69	9 6
105	Dimensions of coupling in middleware. <i>Concurrency Computation Practice and Experience</i> , 2009 , 21, 223 Using CEP technology to adapt messages exchanged by web services 2008 ,	3±22/69	6
		3 -12 269	
104	Using CEP technology to adapt messages exchanged by web services 2008 , Middleware support for mobile applications. <i>International Journal of Pervasive Computing and</i>		6
104	Using CEP technology to adapt messages exchanged by web services 2008 , Middleware support for mobile applications. <i>International Journal of Pervasive Computing and Communications</i> , 2005 , 1, 75-88 Enabling Process Innovation via Deviance Mining and Predictive Monitoring. <i>Management for</i>	3.3	6
104	Using CEP technology to adapt messages exchanged by web services 2008 , Middleware support for mobile applications. <i>International Journal of Pervasive Computing and Communications</i> , 2005 , 1, 75-88 Enabling Process Innovation via Deviance Mining and Predictive Monitoring. <i>Management for Professionals</i> , 2015 , 145-154	3.3	6 6
104 103 102	Using CEP technology to adapt messages exchanged by web services 2008, Middleware support for mobile applications. International Journal of Pervasive Computing and Communications, 2005, 1, 75-88 Enabling Process Innovation via Deviance Mining and Predictive Monitoring. Management for Professionals, 2015, 145-154 Mining Business Process Stages from Event Logs. Lecture Notes in Computer Science, 2017, 577-594 Semantic DMN: Formalizing Decision Models with Domain Knowledge. Lecture Notes in Computer	3.3 0.4	6 6 6
104 103 102 101	Using CEP technology to adapt messages exchanged by web services 2008, Middleware support for mobile applications. International Journal of Pervasive Computing and Communications, 2005, 1, 75-88 Enabling Process Innovation via Deviance Mining and Predictive Monitoring. Management for Professionals, 2015, 145-154 Mining Business Process Stages from Event Logs. Lecture Notes in Computer Science, 2017, 577-594 Semantic DMN: Formalizing Decision Models with Domain Knowledge. Lecture Notes in Computer Science, 2017, 70-86 Browserbite: cross-browser testing via image processing. Software - Practice and Experience, 2016,	3.3 0.4 0.9	6 6 6 6 6

96	Semantic DMN: Formalizing and Reasoning About Decisions in the Presence of Background Knowledge. <i>Theory and Practice of Logic Programming</i> , 2019 , 19, 536-573	0.8	5
95	Local Concurrency Detection in Business Process Event Logs. <i>ACM Transactions on Internet Technology</i> , 2019 , 19, 1-23	3.8	5
94	Homophilic network decomposition: a community-centric analysis of online social services. <i>Social Network Analysis and Mining</i> , 2016 , 6, 1	2.2	5
93	Issue Dynamics in Github Projects. <i>Lecture Notes in Computer Science</i> , 2015 , 295-310	0.9	5
92	From Petri Nets to Guard-Stage-Milestone Models. <i>Lecture Notes in Business Information Processing</i> , 2013 , 340-351	0.6	5
91	Prescriptive Process Monitoring for Cost-Aware Cycle Time Reduction 2021 ,		5
90	Communication Abstractions for Distributed Business Processes. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2007 , 409-423	0.3	5
89	Service-Enabled Process Management 2010 , 441-460		5
88	The Business Process Modeling Notation 2010 , 347-368		5
87	Managing Process Model Collections with AProMoRe. Lecture Notes in Computer Science, 2010 , 699-701	0.9	5
86	Business Process Management Workshops. Lecture Notes in Business Information Processing, 2014,	0.6	4
85	Predicting the maintainability of XSL transformations. <i>Science of Computer Programming</i> , 2011 , 76, 116	1 <u>-1</u> 11/76	4
84	Towards a Formalization of Contracts for Service Substitution 2010,		4
83	Simulation-Based Evaluation of Workflow Escalation Strategies 2009,		4
82	Strategies in supply chain management for the Trading Agent Competition. <i>Electronic Commerce Research and Applications</i> , 2007 , 6, 369-382	4.6	4
81	The 3DMA Middleware for Mobile Applications. <i>Lecture Notes in Computer Science</i> , 2004 , 312-323	0.9	4
8o	BESERIAL: Behavioural Service Interface Analyser. <i>Lecture Notes in Computer Science</i> , 2008 , 374-377	0.9	4
79	Differential Privacy Analysis of Data Processing Workflows. <i>Lecture Notes in Computer Science</i> , 2016 , 62-79	0.9	4

78	Enforcing Policies and Guidelines in Web Portals: A Case Study 2007 , 154-165		4
77	Predictive Process Monitoring in Apromore. Lecture Notes in Business Information Processing, 2018, 244-2	55 8	4
76	Fire now, fire later: alarm-based systems for prescriptive process monitoring. <i>Knowledge and Information Systems</i> , 2022 , 64, 559-587	2.4	4
75	Business Process Privacy Analysis in Pleak. <i>Lecture Notes in Computer Science</i> , 2019 , 306-312	0.9	3
74	The Rise of the Estonian Start-Up Sphere. <i>IT Professional</i> , 2014 , 16, 8-11	1.9	3
73	Predicting Coding Effort in Projects Containing XML 2012 ,		3
72	Specification and execution of composite trading activities. <i>Electronic Commerce Research</i> , 2007 , 7, 221-2	263	3
71	A model for the configurable composition and synchronization of complex trading activities 2003,		3
70	TEMPOS: a platform for developing temporal applications on top of object DBMS. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2004 , 16, 357-377	4.2	3
69	Discovering data transfer routines from user interaction logs. <i>Information Systems</i> , 2021 , 101916	2.7	3
68	Metaheuristic Optimization for Automated Business Process Discovery. <i>Lecture Notes in Computer Science</i> , 2019 , 268-285	0.9	3
67	Consolidated Management of Business Process Variants. <i>Lecture Notes in Business Information Processing</i> , 2012 , 1-1	э.6	3
66	GPSL: A Programming Language for Service Implementation. <i>Lecture Notes in Computer Science</i> , 2006 , 3-17	0.9	3
65	Prescriptive Process Monitoring Under Resource Constraints: A Causal Inference Approach. <i>Lecture Notes in Business Information Processing</i> , 2022 , 180-193	o.6	3
64	Modeling Software Processes Using BPMN: When and When Not? 2016 , 165-183		2
63	Process Discovery 2013 , 155-184		2
62	Evaluation of trade-offs between workflow escalation strategies. <i>Concurrent Engineering Research and Applications</i> , 2014 , 22, 77-88	1.7	2
61	Cross-Browser Testing in Browserbite. <i>Lecture Notes in Computer Science</i> , 2014 , 503-506	0.9	2

60	Redundancy detection in service-oriented systems 2010,		2
59	A Sequence-Based Object-Oriented Model for Video Databases. <i>Multimedia Tools and Applications</i> , 2002 , 18, 249-277	2.5	2
58	Scaling Dynamic Web Content Provision Using Elapsed-Time-Based Content Degradation. <i>Lecture Notes in Computer Science</i> , 2004 , 559-571	0.9	2
57	Orchestrating interrelated trading activities. <i>International Journal of Business Process Integration and Management</i> , 2005 , 1, 12	0.8	2
56	Verification of Privacy-Enhanced Collaborations 2020,		2
55	Pointwise Temporal Object Database Browsing. <i>Lecture Notes in Computer Science</i> , 2001 , 170-184	0.9	2
54	Event Structures as a Foundation for Process Model Differencing, Part 1: Acyclic processes. <i>Lecture Notes in Computer Science</i> , 2013 , 69-86	0.9	2
53	Discovering generative models from event logs: data-driven simulation vs deep learning. <i>PeerJ Computer Science</i> , 2021 , 7, e577	2.7	2
52	Collecting and Querying Distributed Traces of Composite Service Executions. <i>Lecture Notes in Computer Science</i> , 2002 , 373-390	0.9	2
51	Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements. <i>Data and Knowledge Engineering</i> , 2022 , 102013	1.5	2
50	Learning Accurate Business Process Simulation Models from Event Logs via Automated Process Discovery and Deep Learning. <i>Lecture Notes in Computer Science</i> , 2022 , 55-71	0.9	2
49	Structuring Business Process Management 2019 , 203-211		1
48	Process Monitoring 2018 , 413-473		1
47	Process Discovery 2018 , 159-212		1
46	Business Process Privacy Analysis in Pleak. <i>Informatik-Spektrum</i> , 2019 , 42, 354-355	0.3	1
45	Quantitative Process Analysis 2013 , 213-251		1
44	Community-Based Prediction of Activity Change in Skype 2015 ,		1
43	Analyzing Web Services Networks: Theory and Practice 2014 , 381-406		1

42	Designing Maintainable XML Transformations 2010 ,		1
41	Improving Web Service Survivability via Gracefully Degraded Substitution 2010,		1
40	Configurable SOAP proxy cache for data provisioning web services 2011 ,		1
39	Specification of composite trading activities in supply chain management		1
38	Semantic Issues in E-Commerce Systems. <i>IFIP Advances in Information and Communication Technology</i> , 2003 ,	0.5	1
37	Discovering Business Process Simulation Models in the Presence of Multitasking. <i>Lecture Notes in Business Information Processing</i> , 2020 , 381-397	0.6	1
36	Business Process Graphs. Advances in Data Mining and Database Management Book Series, 421-437	0.6	1
35	Encoding resource experience for predictive process monitoring. <i>Decision Support Systems</i> , 2021 , 11366	53 .6	1
34	Programming and Compiling Web Services in GPSL. Lecture Notes in Computer Science, 2005, 508-513	0.9	1
33	Disclosure Analysis of SQL Workflows. Lecture Notes in Computer Science, 2019, 51-70	0.9	1
32	Varying Resource Consumption to Achieve Scalable Web Services. <i>Lecture Notes in Computer Science</i> , 2003 , 179-190	0.9	1
31	Einffirung in das Geschftsprozessmanagement 2021 , 1-38		1
30	Robotic Process Mining. Lecture Notes in Business Information Processing, 2022, 468-491	0.6	1
29	From Business Process Models to Service Interfaces 2015 , 557-578		Ο
28	Silhouetting the Cost-Time Front: Multi-objective Resource Optimization in Business Processes. Lecture Notes in Business Information Processing, 2021 , 92-108	0.6	О
27	Process Identification 2018, 35-73		
26	Essential Process Modeling 2018 , 75-115		
25	Quantitative Process Analysis 2018 , 255-296		

24	Business Process Analytics: From Insights to Predictions. <i>Communications in Computer and Information Science</i> , 2018 , 15-20	0.3
23	Experience Using a Coordination-Based Architecture for Adaptive Web Content Provision. <i>Lecture Notes in Computer Science</i> , 2005 , 140-156	0.9
22	PhDOOS 2000: The 10th Ph.D. Workshop on Object-Oriented Systems. <i>Lecture Notes in Computer Science</i> , 2000 , 78-92	0.9
21	Business Process Event Logs and Visualization 2018 , 1-12	
20	On the Suitability of Generalized Behavioral Profiles for Process Model Comparison. <i>Lecture Notes in Computer Science</i> , 2016 , 13-28	0.9
19	Detecting Behavioural Incompatibilities between Pairs of Services. <i>Lecture Notes in Computer Science</i> , 2009 , 79-90	0.9
18	The Process Documentation Cube: A Model for Process Documentation Assessment. <i>Lecture Notes in Business Information Processing</i> , 2013 , 501-512	0.6
17	Prozessorientierte Informationssysteme 2021 , 399-432	
16	Fortgeschrittene Prozessmodellierung 2021 , 135-181	
15	Automated Discovery of Process Models with True Concurrency and Inclusive Choices. <i>Lecture Notes in Business Information Processing</i> , 2021 , 43-56	0.6
14	BPM als UnternehmensfBigkeit 2021 , 553-585	
13	Quantitative Prozessanalyse 2021 , 299-346	
12	Prozesserhebung 2021 , 183-247	
11	Prozessimplementierung mit ausffirbaren Modellen 2021 , 433-480	
10	Prozessidentifikation 2021 , 39-83	
9	Adapting the CRISP-DM Data Mining Process: A Case Study in the Financial Services Domain. <i>Lecture Notes in Business Information Processing</i> , 2021 , 55-71	0.6
8	Optimization framework for DFG-based automated process discovery approaches. <i>Software and Systems Modeling</i> , 2021 , 20, 1245-1270	1.9
7	Multi-level privacy analysis of business processes: the Pleak toolset. <i>International Journal on Software Tools for Technology Transfer</i> ,1	1.3

LIST OF PUBLICATIONS

- 6 ProzessBerwachung **2021**, 481-551
- 5 Prozessverbesserung **2021**, 347-397
- 4 Qualitative Prozessanalyse **2021**, 249-297
- 3 Grundlagen der Geschftsprozessmodellierung **2021**, 85-133
- 2 Process-Oriented Assessment of Web Services269-293
- Data-Driven Analysis of Batch Processing Inefficiencies in Business Processes. *Lecture Notes in Business Information Processing*, **2022**, 231-247

0.6