Stefano Guido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820518/publications.pdf

Version: 2024-02-01

136 papers

5,778 citations

76294 40 h-index 70 g-index

142 all docs

142 docs citations

142 times ranked

5955 citing authors

#	Article	IF	CITATIONS
1	Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature Cell Biology, 2010, 12, 863-875.	4.6	420
2	A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels Correlation of fibroblast orientation and gel birefringence. Journal of Cell Science, 1993, 105, 317-331.	1.2	228
3	Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Annals of Biomedical Engineering, 1994, 22, 342-356.	1.3	194
4	Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 2015, 222, 581-599.	7.0	183
5	Three-dimensional shape of a drop under simple shear flow. Journal of Rheology, 1998, 42, 395-415.	1.3	179
6	Binary collision of drops in simple shear flow by computer-assisted video optical microscopy. Journal of Fluid Mechanics, 1998, 357, 1-20.	1.4	160
7	Drop Deformation in Microconfined Shear Flow. Physical Review Letters, 2006, 97, 054502.	2.9	154
8	Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy, 2014, 10, 2053-2074.	4.3	135
9	Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARÂ downregulation in intestinal epithelial cells and coeliac mucosa. Gut, 2010, 59, 311-319.	6.1	125
10	Drop breakup and fragment size distribution in shear flow. Journal of Rheology, 2003, 47, 1283-1298.	1.3	121
11	Red blood cell deformation in microconfined flow. Soft Matter, 2009, 5, 3736.	1.2	121
12	Microfluidics analysis of red blood cell membrane viscoelasticity. Lab on A Chip, 2011, 11, 449-454.	3.1	114
13	Tissue Transglutaminase Activation Modulates Inflammation in Cystic Fibrosis via PPARÎ ³ Down-Regulation. Journal of Immunology, 2008, 180, 7697-7705.	0.4	112
14	Emulsions in porous media: From single droplet behavior to applications for oil recovery. Advances in Colloid and Interface Science, 2018, 256, 305-325.	7.0	102
15	Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Advances, 2016, 6, 4723-4729.	1.7	95
16	Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on î"F508 cystic fibrosis transmembrane conductance regulator. Autophagy, 2012, 8, 1657-1672.	4.3	88
17	Phase behavior of aqueous solutions of hydroxypropyl cellulose. Macromolecules, 1995, 28, 4530-4539.	2.2	85
18	Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape. Journal of Controlled Release, 2015, 217, 263-272.	4.8	82

#	Article	IF	CITATIONS
19	A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death and Differentiation, 2016, 23, 1380-1393.	5.0	82
20	SUMOylation of Tissue Transglutaminase as Link between Oxidative Stress and Inflammation. Journal of Immunology, 2009, 183, 2775-2784.	0.4	80
21	Comparative measurements of interfacial tension in a model polymer blend. Polymer Engineering and Science, 1997, 37, 1540-1549.	1.5	78
22	Measurement of Interfacial Tension by Drop Retraction Analysis. Journal of Colloid and Interface Science, 1999, 209, 247-250.	5.0	75
23	Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity. Current Opinion in Colloid and Interface Science, 2011, 16, 61-70.	3.4	74
24	Microconfined flow behavior of red blood cells in vitro. Comptes Rendus Physique, 2009, 10, 751-763.	0.3	73
25	Droplet deformation under confined Poiseuille flow. Advances in Colloid and Interface Science, 2010, 161, 89-101.	7.0	69
26	Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research, 2011, 82, 35-41.	1.1	68
27	A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. Journal of Cell Science, 1993, 105 (Pt 2), 317-31.	1.2	66
28	Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow. Journal of Non-Newtonian Fluid Mechanics, 2003, 114, 65-82.	1.0	63
29	Phase diagram, rheology and interfacial tension of aqueous mixtures of Na-caseinate and Na-alginate. Food Hydrocolloids, 2004, 18, 463-470.	5.6	63
30	Drop shape dynamics under shear-flow reversal. Journal of Rheology, 2000, 44, 1385-1399.	1.3	53
31	Apple polyphenols extract (APE) improves colon damage in a rat model of colitis. Digestive and Liver Disease, 2012, 44, 555-562.	0.4	53
32	Red blood cell clustering in Poiseuille microcapillary flow. Physics of Fluids, 2012, 24, .	1.6	52
33	Flow-induced gelation of microfiber suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8557-E8564.	3.3	52
34	High-Throughput Screening-Compatible Single-Step Protocol to Differentiate Embryonic Stem Cells in Neurons. Stem Cells and Development, 2008, 17, 573-584.	1.1	50
35	Microconfined flow behavior of red blood cells. Medical Engineering and Physics, 2016, 38, 11-16.	0.8	49
36	A New Method to Improve the Clinical Evaluation of Cystic Fibrosis Patients by Mucus Viscoelastic Properties. PLoS ONE, 2014, 9, e82297.	1.1	48

#	Article	IF	Citations
37	A Continuous Process for Buchwald–Hartwig Amination at Micro-, Lab-, and Mesoscale Using a Novel Reactor Concept. Organic Process Research and Development, 2016, 20, 558-567.	1.3	48
38	Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory. Rheologica Acta, 2001, 40, 176-184.	1.1	47
39	Blood linear viscoelasticity by small amplitude oscillatory flow. Rheologica Acta, 2016, 55, 485-495.	1.1	47
40	Break-up of a Newtonian drop in a viscoelastic matrix under simple shear flow. Rheologica Acta, 2004, 43, 449-456.	1,1	46
41	Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death and Differentiation, 2013, 20, 1101-1115.	5.0	45
42	A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO Journal, 2019, 38, .	3.5	43
43	Phase separation effects in the rheology of aqueous solutions of hydroxypropylcellulose. Rheologica Acta, 1995, 34, 137-146.	1.1	41
44	Diffusion effects on the interfacial tension of immiscible polymer blends. Rheologica Acta, 1999, 38, 287-296.	1.1	40
45	Shear Banding in Biphasic Liquid-Liquid Systems. Physical Review Letters, 2008, 100, 137801.	2.9	37
46	Interfacial tension of aqueous mixtures of Na-caseinate and Na-alginate by drop deformation in shear flow. Carbohydrate Polymers, 2002, 48, 143-152.	5.1	36
47	Effects of matrix viscoelasticity on drop deformation in dilute polymer blends under slow shear flow. Polymer, 2003, 44, 467-471.	1.8	36
48	Microconfined Shear Deformation of a Droplet in an Equiviscous Non-Newtonian Immiscible Fluid: Experiments and Modeling. Langmuir, 2010, 26, 126-132.	1.6	35
49	Comparison between fibroblast wound healing and cell random migration assays in vitro. Experimental Cell Research, 2016, 347, 123-132.	1.2	34
50	A Numerical and Experimental Investigation of Lamellar Blend Morphologies. Industrial & Engineering Chemistry Research, 2002, 41, 6305-6311.	1.8	33
51	Evolution of drop size distribution of polymer blends under shear flow by optical sectioning. Rheologica Acta, 2004, 43, 491-501.	1.1	33
52	Shear-induced coalescence in aqueous biopolymer mixtures. Chemical Engineering Science, 2005, 60, 1019-1027.	1.9	33
53	Drop deformation in sheared polymer blends. Journal of Rheology, 2007, 51, 761-774.	1.3	33
54	Palladium-N-heterocyclic carbene (NHC) catalyzed C–N bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation. Chemical Engineering Journal, 2013, 223, 578-583.	6.6	33

#	Article	IF	CITATIONS
55	Measuring Interfacial Tension of Emulsions <i>in Situ</i> by Microfluidics. Langmuir, 2018, 34, 4991-4997.	1.6	33
56	Early tissue transglutaminase–mediated response underlies K562(S)-cell gliadin-dependent agglutination. Pediatric Research, 2012, 71, 532-538.	1.1	32
57	Red blood cell dynamics in polymer brush-coated microcapillaries: A model of endothelial glycocalyx <i>in vitro</i> . Biomicrofluidics, 2014, 8, 014104.	1.2	32
58	Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?. Colloids and Surfaces B: Biointerfaces, 2016, 139, 294-305.	2.5	32
59	Diffusion in Polymer Blends by Raman Microscopy. Macromolecules, 2008, 41, 5512-5514.	2.2	31
60	CFD-DEM simulations of particulate fouling in microchannels. Chemical Engineering Journal, 2019, 358, 91-100.	6.6	31
61	Experimental Determination of Drop Shape in Slow Steady Shear Flow. Journal of Colloid and Interface Science, 1999, 219, 298-309.	5.0	30
62	Using Optical Tweezers for the Characterization of Polyelectrolyte Solutions with Very Low Viscoelasticity. Langmuir, 2013, 29, 9224-9230.	1.6	30
63	Migration of a sphere in a viscoelastic fluid under planar shear flow: Experiments and numerical predictions. Soft Matter, 2011, 7, 1100-1106.	1.2	29
64	The effect of shear flow on microreactor clogging. Chemical Engineering Journal, 2018, 341, 639-647.	6.6	29
65	Shear-Induced Deformation of Surfactant Multilamellar Vesicles. Physical Review Letters, 2012, 108, 138301.	2.9	28
66	Newtonian drop in a Newtonian matrix subjected to large amplitude oscillatory shear flows. Rheologica Acta, 2004, 43, 575-583.	1.1	27
67	A parameter investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: effects of shear rate, shear stress volume fraction, and viscosity. Rheologica Acta, 2006, 45, 505-512.	1.1	27
68	Comparison of two flowâ€based imaging methods to measure individual red blood cell area and volume. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 1040-1047.	1.1	27
69	Vorticity Banding in Biphasic Polymer Blends. Langmuir, 2012, 28, 16254-16262.	1.6	27
70	Monitoring emulsion microstructure by using organic electrochemical transistors. Journal of Materials Chemistry C, 2017, 5, 2056-2065.	2.7	27
71	Drop deformation under small-amplitude oscillatory shear flow. Rheologica Acta, 2003, 42, 1-9.	1.1	26
72	Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 134, 27-32.	1.0	25

#	Article	lF	Citations
73	A Novel Chemotaxis Assay in 3-D Collagen Gels by Time-Lapse Microscopy. PLoS ONE, 2012, 7, e52251.	1.1	24
74	PED/PEAâ€15 controls fibroblast motility and wound closure by ERK1/2â€dependent mechanisms. Journal of Cellular Physiology, 2012, 227, 2106-2116.	2.0	24
75	Dynamic flow behaviour of surfactant vesicles under shear flow: role of a multilamellar microstructure. Soft Matter, 2013, 9, 7545.	1.2	24
76	Rheo-optics of hydroxypropylcellulose solutions in Poiseuille flow. Rheologica Acta, 1994, 33, 22-28.	1.1	23
77	Diffusive Mixing of Polymers Investigated by Raman Microspectroscopy and Microrheology. Langmuir, 2010, 26, 14223-14230.	1.6	23
78	Flow Reduction in Microchannels Coated with a Polymer Brush. Langmuir, 2012, 28, 13758-13764.	1.6	23
79	Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Scientific Reports, 2020, 10, 15921.	1.6	23
80	Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1368-1374.	2.0	22
81	Branched alkyldimethylamine oxide surfactants: An effective strategy for the design of high concentration/low viscosity surfactant formulations. Journal of Colloid and Interface Science, 2019, 552, 448-463.	5.0	22
82	Antibiofilm Properties of Temporin-L on Pseudomonas fluorescens in Static and In-Flow Conditions. International Journal of Molecular Sciences, 2020, 21, 8526.	1.8	22
83	Engineering approaches in siRNA delivery. International Journal of Pharmaceutics, 2017, 525, 343-358.	2.6	21
84	Microfluidic interactions between red blood cells and drug carriers by image analysis techniques. Medical Engineering and Physics, 2016, 38, 17-23.	0.8	20
85	The wound healing assay revisited: A transport phenomena approach. Chemical Engineering Science, 2017, 160, 200-209.	1.9	20
86	Flow-induced nanostructuring of gelled emulsions. Soft Matter, 2017, 13, 5696-5703.	1.2	19
87	Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. Micromachines, 2021, 12, 820.	1.4	19
88	Endothelial glycocalyx regulates cytoadherence in Plasmodium falciparum malaria. Journal of the Royal Society Interface, 2018, 15, 20180773.	1.5	18
89	The role of flow in bacterial biofilm morphology and wetting properties. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111047.	2.5	18
90	Measurement of average drop size in aqueous mixtures of Na-alginate and Na-caseinate by linear oscillatory tests. Food Hydrocolloids, 2002, 16, 449-459.	5.6	17

#	Article	IF	Citations
91	Velocity profiles in rectangular channel flow of liquid crystalline polymer solutions. Rheologica Acta, 1991, 30, 71-76.	1.1	15
92	Analysis of start-up dynamics of a single drop through an ellipsoidal drop model for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 2005, 126, 145-151.	1.0	15
93	A microfluidic approach for flexible and efficient operation of a cross-coupling reactive flow. RSC Advances, 2015, 5, 63786-63792.	1.7	15
94	S-shaped deformation profiles in sheared liquid-crystalline polymers. Liquid Crystals, 1990, 7, 279-282.	0.9	14
95	Shear-induced clustering of gelling droplets in aqueous biphasic mixtures of gelatin and dextran. Journal of Rheology, 2002, 46, 1263-1278.	1.3	14
96	A methodology to study chemotaxis in 3â€D collagen gels. AICHE Journal, 2013, 59, 4025-4035.	1.8	14
97	The microstructure of Carbopol in water under static and flow conditions and its effect on the yield stress. Journal of Colloid and Interface Science, 2021, 582, 1067-1074.	5.0	14
98	Swelling-induced structural changes and microparticle uptake of gelatin gels probed by NMR and CLSM. Soft Matter, 2017, 13, 2952-2961.	1.2	12
99	A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Annali Dell'Istituto Superiore Di Sanita, 2007, 43, 186-92.	0.2	12
100	Effect of sol–gel transition on shear-induced drop deformation in aqueous mixtures of gellan and κ-carrageenan. Journal of Colloid and Interface Science, 2005, 281, 488-494.	5.0	11
101	Phase behavior of the ternary aqueous mixtures of two polydisperse ethoxylated nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 16-24.	2.3	10
102	Real-time monitoring of self-assembling worm-like micelle formation by organic transistors. RSC Advances, 2015, 5, 16554-16561.	1.7	10
103	Dynamic behaviour of multilamellar vesicles under Poiseuille flow. Soft Matter, 2017, 13, 6304-6313.	1.2	10
104	Shear Flow Rheology of Liquid Crystalline Polymers. International Journal of Polymer Analysis and Characterization, 1995, 1, 191-199.	0.9	9
105	Dispersion of sepiolite rods in nanofibers by electrospinning. Polymer, 2013, 54, 1295-1297.	1.8	9
106	Dissolution of a surfactant-water lamellar phase investigated by combining time-lapse polarized light microscopy and confocal Raman spectroscopy. Journal of Colloid and Interface Science, 2020, 561, 136-146.	5.0	9
107	Single Drop Dynamics under Shearing Flow in Systems with a Viscoelastic Phase. Macromolecular Symposia, 2005, 228, 31-40.	0.4	8
108	Water evaporation from porous media by Dynamic Vapor Sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 159-164.	2.3	8

#	Article	IF	CITATIONS
109	Confined tube flow of low viscosity emulsions: Effect of matrix elasticity. Journal of Rheology, 2016, 60, 419-432.	1.3	8
110	5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers, 2022, 14, 1630.	1.7	8
111	A novel approach to quantify the wound closure dynamic. Experimental Cell Research, 2017, 352, 175-183.	1.2	7
112	Quantitative methods to detect phospholipids at the oil-water interface. Advances in Colloid and Interface Science, 2021, 290, 102392.	7.0	7
113	Dissolution of concentrated surfactant solutions: from microscopy imaging to rheological measurements through numerical simulations. Soft Matter, 2019, 15, 8352-8360.	1.2	6
114	Flow-induced concentration gradients in shear-banding of branched wormlike micellar solutions. Journal of Colloid and Interface Science, 2019, 534, 695-703.	5.0	6
115	Effect of tail branching on the phase behavior and the rheological properties of amine oxide/ethoxysulfate surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126091.	2.3	6
116	Organic electrochemical transistors as novel biosensing platforms to study the electrical response of whole blood and plasma. Journal of Materials Chemistry B, 2021, 10, 87-95.	2.9	6
117	Visualization of choline-based phospholipids at the interface of oil/water emulsions with TEPC-15 antibody. Immunofluorescence applied to colloidal systems. RSC Advances, 2016, 6, 109960-109968.	1.7	5
118	Flow-switchable morphology of concentrated emulsions. Chemical Engineering and Processing: Process Intensification, 2018, 125, 275-279.	1.8	5
119	Tuning crystal structure in a micro-scale reactive flow. Chemical Engineering Science, 2019, 207, 581-587.	1.9	5
120	Cholesteric Textures of Aqueous Hydroxypropylcellulose Solutions. Molecular Crystals and Liquid Crystals, 1995, 266, 111-119.	0.3	4
121	An Electric Criterion to Evaluate Glass Transition Temperature: Dielectric Relaxation Measurements. Macromolecular Symposia, 2007, 247, 43-49.	0.4	4
122	Cardiomyocyte Differentiation of Embryonic Stem Cells on the Surface of Organic Semiconductors. International Journal of Artificial Organs, 2013, 36, 426-433.	0.7	4
123	Development of model systems for in vitro investigation of transdermal transport pathways. Canadian Journal of Chemical Engineering, 2017, 95, 1637-1645.	0.9	4
124	Microstructure evolution during nano-emulsification by NMR and microscopy. Journal of Colloid and Interface Science, 2019, 551, 138-146.	5.0	4
125	Wetting properties of dehydrated biofilms under different growth conditions. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112245.	2.5	4
126	Diffusionâ€induced anisotropic cancer invasion: A novel experimental method based on tumor spheroids. AICHE Journal, 2022, 68, .	1.8	4

#	Article	IF	CITATIONS
127	Confined flow behaviour of droplets in microcapillary flow. European Physical Journal E, 2019, 42, 29.	0.7	2
128	Correction: SUMOylation of Tissue Transglutaminase as Link between Oxidative Stress and Inflammation. Journal of Immunology, 2014, 193, 5347-5349.	0.4	1
129	The effect of flow on viscoelastic emulsion microstructure. European Physical Journal E, 2018, 41, 45.	0.7	1
130	Flow-Induced Deformation of Drops. Mathematics in Industry, 2002, , 415-419.	0.1	1
131	Rheology of blood cells, capsules, and vesicles. Rheologica Acta, 2016, 55, 431-431.	1.1	O
132	Evolution under shear flow of drop size distribution in bipolymer mixtures. Special Publication - Royal Society of Chemistry, 2009, , 280-287.	0.0	0
133	Analysis of Red Blood Cell Deformation in a Microfluidic Device. , 2010, , .		O
134	Flow Visualization of Liquid Crystalline Polymer Solutions in Rectangular Channels., 1992,, 67-71.		0
135	3D Deformation of a Drop in Simple Shear Flow by Video Microscopy. , 1998, , 477-478.		0
136	The Deformation of an Ellipsoidal Drop under Viscous Flow Conditions., 1998,, 84-85.		0