Silvia Vergarajauregui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820474/publications.pdf

Version: 2024-02-01

471509 642732 1,339 23 17 23 g-index citations h-index papers 30 30 30 2220 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	IQGAP3, a YAP Target, Is Required for Proper Cell-Cycle Progression and Genome Stability. Molecular Cancer Research, 2021, 19, 1712-1726.	3.4	11
2	Alternative Splicing of Pericentrin Contributes to Cell Cycle Control in Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2021, 8, 87.	1.6	4
3	Myogenin controls via AKAP6 non-centrosomal microtubule-organizing center formation at the nuclear envelope. ELife, 2021, 10, .	6.0	6
4	AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. ELife, 2020, 9, .	6.0	32
5	Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome. American Journal of Human Genetics, 2018, 102, 468-479.	6.2	63
6	Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Human Molecular Genetics, 2017, 26, 2701-2718.	2.9	16
7	Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. ELife, 2015, 4, .	6.0	105
8	Novel Role of TRPML2 in the Regulation of the Innate Immune Response. Journal of Immunology, 2015, 195, 4922-4932.	0.8	69
9	EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis. EMBO Journal, 2014, 33, 129-145.	7.8	37
10	Lysine methyltransferase Smyd2 suppresses p53-dependent cardiomyocyte apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2556-2562.	4.1	38
11	<i>C6orf89</i> encodes three distinct HDAC enhancers that function in the nucleolus, the golgi and the midbody. Journal of Cellular Physiology, 2013, 228, 1907-1921.	4.1	12
12	Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nature Cell Biology, 2012, 14, 838-849.	10.3	124
13	LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. Journal of Cell Science, 2011, 124, 459-468.	2.0	55
14	The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. Journal of Cell Biology, 2010, 189, 725-738.	5.2	121
15	Identification of the Penta-EF-hand Protein ALG-2 as a Ca2+-dependent Interactor of Mucolipin-1. Journal of Biological Chemistry, 2009, 284, 36357-36366.	3.4	77
16	Daxx functions as a scaffold of a protein assembly constituted by GLUT4, JNK1 and KIF5B. Journal of Cellular Physiology, 2009, 218, 416-426.	4.1	16
17	Mucolipidosis type IV: The importance of functional lysosomes for efficient autophagy. Autophagy, 2008, 4, 832-834.	9.1	29
18	Autophagic dysfunction in mucolipidosis type IV patients. Human Molecular Genetics, 2008, 17, 2723-2737.	2.9	163

#	Article	IF	CITATIONS
19	Mucolipin 1 channel activity is regulated by protein kinase A-mediated phosphorylation. Biochemical Journal, 2008, 410, 417-425.	3.7	36
20	Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes. Traffic, 2006, 7, 337-353.	2.7	154
21	Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization. Traffic, 2006, 7, 686-698.	2.7	85
22	The Insulin-sensitive Glucose Transporter, GLUT4, Interacts Physically with Daxx. Journal of Biological Chemistry, 2002, 277, 19783-19791.	3.4	67
23	Targeting motifs in GLUT4. Molecular Membrane Biology, 2001, 18, 257-264.	2.0	18