Matthias Brendel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<pre><scp>sTREM</scp> 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in earlyâ€stage Alzheimer's disease and associate with neuronal injury markers. EMBO Molecular Medicine, 2016, 8, 466-476.</pre>	6.9	392
2	Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nature Neuroscience, 2019, 22, 191-204.	14.8	358
3	White matter aging drives microglial diversity. Neuron, 2021, 109, 1100-1117.e10.	8.1	208
4	The <scp>FTD</scp> â€like syndrome causing <scp>TREM</scp> 2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO Journal, 2017, 36, 1837-1853.	7.8	152
5	Assessment of ¹⁸ F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurology, 2020, 77, 1408.	9.0	145
6	Four-repeat tauopathies. Progress in Neurobiology, 2019, 180, 101644.	5.7	141
7	Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage, 2015, 108, 450-459.	4.2	120
8	Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study. Journal of Nuclear Medicine, 2016, 57, 954-960.	5.0	113
9	Microglial activation states drive glucose uptake and FDC-PET alterations in neurodegenerative diseases. Science Translational Medicine, 2021, 13, eabe5640.	12.4	108
10	Evaluation of early-phase [18 F]-florbetaben PET acquisition in clinical routine cases. NeuroImage: Clinical, 2017, 14, 77-86.	2.7	91
11	Opposite microglial activation stages upon loss of <scp>PGRN</scp> or <scp>TREM</scp> 2 result in reduced cerebral glucose metabolism. EMBO Molecular Medicine, 2019, 11, .	6.9	87
12	EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 632-651.	6.4	82
13	Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment?. EJNMMI Research, 2017, 7, 48.	2.5	76
14	Longitudinal Assessment of Cerebral β-Amyloid Deposition in Mice Overexpressing Swedish Mutant β-Amyloid Precursor Protein Using ¹⁸ F-Florbetaben PET. Journal of Nuclear Medicine, 2013, 54, 1127-1134.	5.0	75
15	Higher CSF sTREM2 and microglia activation are associated with slower rates of betaâ€amyloid accumulation. EMBO Molecular Medicine, 2020, 12, e12308.	6.9	73
16	Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 716-724.	6.4	67
17	Increase of TREM2 during Aging of an Alzheimer's Disease Mouse Model Is Paralleled by Microglial Activation and Amyloidosis. Frontiers in Aging Neuroscience, 2017, 9, 8.	3.4	60
18	Suspected recurrence of brain metastases after focused high dose radiotherapy: can [18F]FET- PET overcome diagnostic uncertainties?. Radiation Oncology, 2016, 11, 139.	2.7	59

#	Article	IF	CITATIONS
19	Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals. Alzheimer's Research and Therapy, 2021, 13, 137.	6.2	59
20	[18F]-THK5351 PET Correlates with Topology and Symptom Severity in Progressive Supranuclear Palsy. Frontiers in Aging Neuroscience, 2017, 9, 440.	3.4	58
21	TSPO imaging using the novel PET ligand [18F]CE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Research, 2017, 7, 89.	2.5	55
22	Metabolic patterns across core features in dementia with lewy bodies. Annals of Neurology, 2019, 85, 715-725.	5.3	47
23	Cortical [<scp>¹⁸F</scp>] <scp>PI</scp> â€2620 Binding Differentiates Corticobasal Syndrome Subtypes. Movement Disorders, 2021, 36, 2104-2115.	3.9	46
24	Cross-Sectional Comparison of Small Animal [18F]-Florbetaben Amyloid-PET between Transgenic AD Mouse Models. PLoS ONE, 2015, 10, e0116678.	2.5	45
25	Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [18F]-Florbetaben PET Quantitation in Alzheimer's Model Mice. Frontiers in Neuroscience, 2016, 10, 45.	2.8	42
26	Metabolic Correlates of Dopaminergic Loss in Dementia with Lewy Bodies. Movement Disorders, 2020, 35, 595-605.	3.9	42
27	Longitudinal PET Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid-1 ² Mouse Model. Journal of Nuclear Medicine, 2019, 60, 1787-1793.	5.0	41
28	A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 563-584.	6.4	41
29	Microglial response to increasing amyloid load saturates with aging: a longitudinal dual tracer in vivo μPET-study. Journal of Neuroinflammation, 2018, 15, 307.	7.2	40
30	PET/CT imaging for tumour response assessment to immunotherapy: current status and future directions. European Radiology Experimental, 2020, 4, 63.	3.4	38
31	Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO Journal, 2022, 41, e109108.	7.8	38
32	Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study. Journal of Nuclear Medicine, 2017, 58, 1984-1990.	5.0	37
33	In Vivo Assessment of Neuroinflammation in <scp>4â€Repeat</scp> Tauopathies. Movement Disorders, 2021, 36, 883-894.	3.9	37
34	Loss of <scp>TMEM</scp> 106B potentiates lysosomal and <scp>FTLD</scp> â€like pathology in progranulinâ€deficient mice. EMBO Reports, 2020, 21, e50241.	4.5	37
35	Early and Longitudinal Microglial Activation but Not Amyloid Accumulation Predicts Cognitive Outcome in PS2APP Mice. Journal of Nuclear Medicine, 2019, 60, 548-554.	5.0	36
36	Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2911-2922.	6.4	36

#	Article	IF	CITATIONS
37	Small-Animal PET Imaging of Tau Pathology with ¹⁸ F-THK5117 in 2 Transgenic Mouse Models. Journal of Nuclear Medicine, 2016, 57, 792-798.	5.0	35
38	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	12.8	34
39	Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells, 2019, 8, 94.	4.1	32
40	PET Imaging of Astrogliosis and Tau Facilitates Diagnosis of Parkinsonian Syndromes. Frontiers in Aging Neuroscience, 2019, 11, 249.	3.4	30
41	Binding characteristics of [¹⁸ F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2957-2972.	4.3	30
42	Prevalence of Amyloid Positron Emission Tomographic Positivity in Poststroke Mild Cognitive Impairment. Stroke, 2016, 47, 2645-2648.	2.0	29
43	Imaging of Tau Pathology in Neurodegenerative Diseases: An Update. Seminars in Nuclear Medicine, 2021, 51, 253-263.	4.6	29
44	KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. Nature Communications, 2021, 12, 3825.	12.8	29
45	Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nature Neuroscience, 2022, 25, 317-329.	14.8	29
46	Late-stage Anle138b treatment ameliorates tau pathology and metabolic decline in a mouse model of human Alzheimer's disease tau. Alzheimer's Research and Therapy, 2019, 11, 67.	6.2	28
47	Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. Journal of Neuroinflammation, 2020, 17, 374.	7.2	28
48	Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [18F]GE180 PET quantification. NeuroImage, 2018, 165, 83-91.	4.2	27
49	Associations of [18F]-APN-1607 Tau PET Binding in the Brain of Alzheimer's Disease Patients With Cognition and Glucose Metabolism. Frontiers in Neuroscience, 2020, 14, 604.	2.8	27
50	Bilateral vestibulopathy causes selective deficits in recombining novel routes in real space. Scientific Reports, 2021, 11, 2695.	3.3	26
51	Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Molecular Neurodegeneration, 2022, 17, .	10.8	26
52	Impact of partial volume effect correction on cerebral β-amyloid imaging in APP-Swe mice using [18F]-florbetaben PET. NeuroImage, 2014, 84, 843-853.	4.2	24
53	Real-space navigation testing differentiates between amyloid-positive and -negative aMCI. Neurology, 2020, 94, e861-e873.	1.1	24
54	The <i>BIN1</i> rs744373 Alzheimer's disease risk SNP is associated with faster Aβâ€associated tau accumulation and cognitive decline. Alzheimer's and Dementia, 2022, 18, 103-115.	0.8	24

#	Article	IF	CITATIONS
55	Mapping 3-year changes in gray matter and metabolism in Aβ-positive nondemented subjects. Neurobiology of Aging, 2015, 36, 2913-2924.	3.1	23
56	Cerebral Glucose Metabolism and Dopaminergic Function in Patients with Corticobasal Syndrome. Journal of Neuroimaging, 2017, 27, 255-261.	2.0	23
57	IgLON5: A case with predominant cerebellar tau deposits and leptomeningeal inflammation. Neurology, 2018, 91, 180-182.	1.1	23
58	Imaging correlates of behavioral impairments: An experimental PET study in the rat pilocarpine epilepsy model. Neurobiology of Disease, 2018, 118, 9-21.	4.4	23
59	Serotonin Selective Reuptake Inhibitor Treatment Improves Cognition and Grey Matter Atrophy but not Amyloid Burden During Two-Year Follow-Up in Mild Cognitive Impairment and Alzheimer's Disease Patients with Depressive Symptoms. Journal of Alzheimer's Disease, 2018, 65, 793-806.	2.6	23
60	Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1364-1374.	6.4	22
61	Efficacy of chronic BACE1 inhibition in PS2APP mice depends on the regional AÎ ² deposition rate and plaque burden at treatment initiation. Theranostics, 2018, 8, 4957-4968.	10.0	22
62	Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3872-3885.	6.4	22
63	Clinical Routine FDG-PET Imaging of Suspected Progressive Supranuclear Palsy and Corticobasal Degeneration: A Gatekeeper for Subsequent Tau-PET Imaging?. Frontiers in Neurology, 2018, 9, 483.	2.4	21
64	[18F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 432-440.	6.4	20
65	In response to: The validity of 18F-GE180 as a TSPO imaging agent. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1208-1211.	6.4	19
66	Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning. Journal of Neuroinflammation, 2020, 17, 208.	7.2	19
67	Asymmetry of Fibrillar Plaque Burden in Amyloid Mouse Models. Journal of Nuclear Medicine, 2020, 61, 1825-1831.	5.0	19
68	Clinical, ocular motor, and imaging profile of Niemann-Pick type C heterozygosity. Neurology, 2020, 94, e1702-e1715.	1.1	18
69	Predicting Regional Pattern of Longitudinal Î ² -Amyloid Accumulation by Baseline PET. Journal of Nuclear Medicine, 2017, 58, 639-645.	5.0	17
70	Comparison of 18F-T807 and 18F-THK5117 PET in a Mouse Model of Tau Pathology. Frontiers in Aging Neuroscience, 2018, 10, 174.	3.4	17
71	Rate of βâ€amyloid accumulation varies with baseline amyloid burden: Implications for antiâ€amyloid drug trials. Alzheimer's and Dementia, 2018, 14, 1387-1396.	0.8	16
72	Microglial activation in the right amygdala-entorhinal-hippocampal complex is associated with preserved spatial learning in App mice. NeuroImage, 2021, 230, 117707.	4.2	16

#	Article	lF	CITATIONS
73	Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2239-2248.	6.4	15
74	In Vivo Imaging of Clial Activation after Unilateral Labyrinthectomy in the Rat: A [18F]GE180-PET Study. Frontiers in Neurology, 2017, 8, 665.	2.4	15
75	Dosimetry and optimal scan time of [18F]SiTATE-PET/CT in patients with neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3571-3581.	6.4	15
76	68Ga-EMP-100 PET/CT—a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma—first in-human biodistribution and imaging results. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1711-1720.	6.4	15
77	Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2798-2811.	6.4	15
78	Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NeuroImage: Clinical, 2019, 24, 101949.	2.7	14
79	Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease. Journal of Nuclear Medicine, 2022, 63, 117-124.	5.0	14
80	Monitoring of Tumor Growth with [18F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches. Frontiers in Neuroscience, 2016, 10, 260.	2.8	13
81	Imaging biomarkers of behavioral impairments: A pilot micro–positron emission tomographic study in a rat electrical post–status epilepticus model. Epilepsia, 2018, 59, 2194-2205.	5.1	13
82	Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome. Frontiers in Aging Neuroscience, 2021, 13, 661284.	3.4	13
83	Cognitive reserve hypothesis in frontotemporal dementia: A FDG-PET study. NeuroImage: Clinical, 2021, 29, 102535.	2.7	13
84	Pre-therapeutic microglia activation and sex determine therapy effects of chronic immunomodulation. Theranostics, 2021, 11, 8964-8976.	10.0	12
85	Differential Spatial Distribution of TSPO or Amino Acid PET Signal and MRI Contrast Enhancement in Gliomas. Cancers, 2022, 14, 53.	3.7	12
86	Feasibility of [68Ga]Ga-FAPI-46 PET/CT for detection of nodal and hematogenous spread in high-grade urothelial carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3571-3580.	6.4	12
87	A novel real-space navigation paradigm reveals age- and gender-dependent changes of navigational strategies and hippocampal activation. Journal of Neurology, 2018, 265, 113-126.	3.6	11
88	Laquinimod ameliorates secondary brain inflammation. Neurobiology of Disease, 2020, 134, 104675.	4.4	11
89	Impact of TSPO Receptor Polymorphism on [18F]GE-180 Binding in Healthy Brain and Pseudo-Reference Regions of Neurooncological and Neurodegenerative Disorders. Life, 2021, 11, 484.	2.4	11
90	Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [18F]PI-2620. Frontiers in Neurology, 2021, 12, 684523.	2.4	11

#	Article	IF	CITATIONS
91	PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Frontiers in Oncology, 2021, 11, 774017.	2.8	10
92	Molecular Simulations Reveal Distinct Energetic and Kinetic Binding Properties of [¹⁸ F]PI-2620 on Tau Filaments from 3R/4R and 4R Tauopathies. ACS Chemical Neuroscience, 2022, 13, 2222-2234.	3.5	10
93	Identification of a rare presenilin 1 single amino acid deletion mutation (F175del) with unusual amyloid-β processing effects. Neurobiology of Aging, 2019, 84, 241.e5-241.e11.	3.1	9
94	Multicenter 18F-PI-2620 PET for In Vivo Braak Staging of Tau Pathology in Alzheimer's Disease. Biomolecules, 2022, 12, 458.	4.0	9
95	Perfusion-Phase [18F]THK5351 Tau-PET Imaging as a Surrogate Marker for Neurodegeneration. Journal of Alzheimer's Disease Reports, 2017, 1, 109-113.	2.2	8
96	Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H2[15 O] PET—BOLD MRI activation study. PLoS ONE, 2020, 15, e0233262.	2.5	8
97	Longitudinal [18F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model. Biomedicines, 2022, 10, 738.	3.2	8
98	¹⁸ F-PI-2620 Tau PET Improves the Imaging Diagnosis of Progressive Supranuclear Palsy. Journal of Nuclear Medicine, 2022, , jnumed.121.262854.	5.0	8
99	Single-Cell Radiotracer Allocation via Immunomagnetic Sorting to Disentangle PET Signals at Cellular Resolution. Journal of Nuclear Medicine, 2022, 63, 1459-1462.	5.0	8
100	Noradrenaline transporter availability on [11C]MRB PET predicts weight loss success in highly obese adults. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1618-1625.	6.4	7
101	Feasibility of Different Tumor Delineation Approaches for 18F-PSMA-1007 PET/CT Imaging in Prostate Cancer Patients. Frontiers in Oncology, 2021, 11, 663631.	2.8	7
102	Stereological Investigation of Regional Brain Volumes after Acute and Chronic Cuprizone-Induced Demyelination. Cells, 2019, 8, 1024.	4.1	6
103	Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer. Journal of Nuclear Cardiology, 2021, 28, 2965-2975.	2.1	6
104	The approval of a disease-modifying treatment for Alzheimer's disease: impact and consequences for the nuclear medicine community. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3033-3036.	6.4	6
105	[18F]MPPF and [18F]FDG μPET imaging in rats: impact of transport and restraint stress. EJNMMI Research, 2020, 10, 112.	2.5	6
106	Total Tumor Volume on 18F-PSMA-1007 PET as Additional Imaging Biomarker in mCRPC Patients Undergoing PSMA-Targeted Alpha Therapy with 225Ac-PSMA-I&T. Biomedicines, 2022, 10, 946.	3.2	6
107	The correlation between striatal and cortical binding ratio of 11C-PiB-PET in amyloid-uptake-positive patients. Annals of Nuclear Medicine, 2018, 32, 398-403.	2.2	5
108	Associations among education, age, and the dementia with Lewy bodies (DLB) metabolic pattern: A Europeanâ€DLB consortium project. Alzheimer's and Dementia, 2021, 17, 1277-1286.	0.8	5

#	Article	IF	CITATIONS
109	18F-FET PET Uptake Characteristics of Long-Term IDH-Wildtype Diffuse Glioma Survivors. Cancers, 2021, 13, 3163.	3.7	5
110	Reduced Acquisition Time [18F]GE-180 PET Scanning Protocol Replaces Gold-Standard Dynamic Acquisition in a Mouse Ischemic Stroke Model. Frontiers in Medicine, 2022, 9, 830020.	2.6	5
111	Chronic PPARÎ ³ Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition. Frontiers in Aging Neuroscience, 2022, 14, 854031.	3.4	5
112	Data on specificity of [18F]GE180 uptake for TSPO expression in rodent brain and myocardium. Data in Brief, 2018, 19, 331-336.	1.0	4
113	Colocalization of Tau but Not β-Amyloid with Cortical Superficial Siderosis in a Case with Probable CAA. Case Reports in Neurology, 2020, 12, 232-237.	0.7	4
114	FDG PET Data is Associated with Cognitive Performance in Patients from a Memory Clinic. Journal of Alzheimer's Disease, 2020, 78, 207-216.	2.6	4
115	TERT-Promoter Mutational Status in Glioblastoma – Is There an Association With Amino Acid Uptake on Dynamic 18F-FET PET?. Frontiers in Oncology, 2021, 11, 645316.	2.8	4
116	Low-degree trisomy 21 mosaicism promotes early-onset Alzheimer disease. Neurobiology of Aging, 2021, 103, 147.e1-147.e5.	3.1	4
117	Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Scientific Reports, 2022, 12, 6049.	3.3	4
118	Applied multimodal diagnostics in a case of presenile dementia. BMC Neurology, 2016, 16, 131.	1.8	3
119	Metabolic connectivity-based single subject classification by multi-regional linear approximation in the rat. NeuroImage, 2021, 235, 118007.	4.2	3
120	ICâ€Pâ€161: 18Fâ€PI2620 TAUâ€PET IN PROGRESSIVE SUPRANUCLEAR PALSY: A MULTIâ€CENTER EVALUATION and Dementia, 2019, 15, P128.	. Alzheime	er's
121	The <i>BIN1</i> rs744373 Alzheimer's disease risk SNP is associated with faster Aβâ€associated tau accumulation and cognitive decline. Alzheimer's and Dementia, 2021, 17, .	0.8	3
122	Detection of Splenic Tissue Using 99mTc-Labelled Denatured Red Blood Cells Scintigraphy—A Quantitative Single Center Analysis. Diagnostics, 2022, 12, 486.	2.6	3
123	Identification of Distant Metastases From Recurrent Gliosarcoma Using Whole-Body 18F-FDG PET/CT. Clinical Nuclear Medicine, 2019, 44, 923-924.	1.3	2
124	Detection Gap of Right-Asymmetric Neuronal Degeneration by CERAD Test Battery in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 611595.	3.4	2
125	Impact of Partial Volume Correction on [18F]GE-180 PET Quantification in Subcortical Brain Regions of Patients with Corticobasal Syndrome. Brain Sciences, 2022, 12, 204.	2.3	2
126	Detection of cardiac apoptosis by [18F]ML-10 in a mouse model of permanent LAD ligation. Molecular Imaging and Biology, 2022, , 1.	2.6	2

#	Article	IF	CITATIONS
127	Binding potential changes of SERT in patients with depression are associated with remission: A prospective [Â1Â2Â3I]Î2-CIT-SPECT study Experimental and Clinical Psychopharmacology, 2023, 31, 219-227.	1.8	2
128	18 Fâ€Plâ€2620 tauâ€PET in corticobasal syndrome (ActiGliA cohort). Alzheimer's and Dementia, 2020, 16, e041469.	0.8	1
129	Immature Plasma Cell Myeloma Mimics Metastatic Renal Cell Carcinoma on 18F-PSMA-1007 PET/CT Due to Endothelial PSMA-Expression. Diagnostics, 2021, 11, 423.	2.6	1
130	Glitter in the darkness? Nonâ€fibrillar βâ€amyloid plaque components significantly impact the βâ€amyloid PET signal. Alzheimer's and Dementia, 2021, 17, .	0.8	1
131	Tau spreads across connected brain regions in progressive supranuclear palsy and corticobasal syndrome. Alzheimer's and Dementia, 2021, 17, .	0.8	1
132	P2-146: Temporo-parietal hypometabolism is associated with reduced functional connectivity of the default mode network in prodromal Alzheimer's disease. , 2015, 11, P542-P542.		0
133	Asymmetry of plaque burden in amyloid mouse models. Alzheimer's and Dementia, 2020, 16, e039153.	0.8	0
134	Microglial activation in vivo is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e039574.	0.8	0
135	Higher TREM2 levels and microglia activation associated with slower rates of amyloid PET increase in humans and a transgenic mouse model of betaâ€amyloid. Alzheimer's and Dementia, 2020, 16, e039813.	0.8	0
136	Microglial activation and brain networks in Alzheimer's disease: The ActiGliA cohort study. Alzheimer's and Dementia, 2020, 16, e043265.	0.8	0
137	Neuropathological characteristics associated with a recently identified rare PSEN1 deletion mutation (F175del). Alzheimer's and Dementia, 2020, 16, e045048.	0.8	0
138	Regional Associations of Cortical Superficial Siderosis and β-Amyloid-Positron-Emission-Tomography Positivity in Patients With Cerebral Amyloid Angiopathy. Frontiers in Aging Neuroscience, 2021, 13, 786143.	3.4	0
139	Associations between sex, body mass index, and the individual microglial response in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
140	In vivo Braakâ€staging using ¹⁸ Fâ€Flortaucipirâ€ŧauâ€PET as a predictive marker for future cognitive decline in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
141	Klothoâ€VS heterozygosity modifies amyloidâ€dependent tau accumulation and memory impairment in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e051343	0.8	0
142	Feasibility of short imaging protocols for [¹⁸ F]Plâ€2620 tauâ€PET in progressive supranuclear palsy. Alzheimer's and Dementia, 2021, 17, .	0.8	0