Ruth A Harris

List of Publications by Citations

Source: https://exaly.com/author-pdf/6820216/ruth-a-harris-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45 4,370 27 50 h-index g-index citations papers 4,886 11.1 50 5.71 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
45	Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. <i>Journal of Geophysical Research</i> , 1998 , 103, 24347-24358		747
44	Dynamics of fault interaction: parallel strike-slip faults. <i>Journal of Geophysical Research</i> , 1993 , 98, 4461	-4472	286
43	Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. <i>Nature</i> , 2005 , 437, 969-74	50.4	272
42	The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. <i>Science</i> , 2003 , 300, 1113-8	33.3	270
41	Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. <i>Nature</i> , 2001 , 411, 462-6	50.4	266
40	Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault. Journal of Geophysical Research, 1987 , 92, 7945		235
39	Changes in static stress on southern California faults after the 1992 Landers earthquake. <i>Nature</i> , 1992 , 360, 251-254	50.4	227
38	Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. <i>Journal of Geophysical Research</i> , 1998 , 103, 24439-24451		189
37	In the shadow of 1857-the effect of the Great Ft. Tejon Earthquake on subsequent earthquakes in southern California. <i>Geophysical Research Letters</i> , 1996 , 23, 229-232	4.9	170
36	Influence of static stress changes on earthquake locations in southern California. <i>Nature</i> , 1995 , 375, 22	1-324	163
35	Dynamic 3D simulations of earthquakes on En Echelon Faults. <i>Geophysical Research Letters</i> , 1999 , 26, 2089-2092	4.9	158
34	Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. <i>Geophysical Research Letters</i> , 1991 , 18, 893-896	4.9	150
33	The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise. <i>Seismological Research Letters</i> , 2009 , 80, 119-126	3	148
32	Large earthquakes and creeping faults. Reviews of Geophysics, 2017, 55, 169-198	23.1	120
31	Earthquake deformation cycle on the San Andreas Fault near Parkfield, California. <i>Journal of Geophysical Research</i> , 1987 , 92, 10511-10525		105
30	The magnitude 6.7 northridge, california, earthquake of 17 january 1994. <i>Science</i> , 1994 , 266, 389-97	33.3	103
29	A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. <i>Seismological Research Letters</i> , 2018 , 89, 1146-1162	3	85

(2015-2007)

28	Do Great Earthquakes Occur on the Alpine Fault in Central South Island, New Zealand?. <i>Geophysical Monograph Series</i> , 2007 , 235-251	1.1	78	
27	The 1999 Izmit, Turkey, Earthquake: A 3D Dynamic Stress Transfer Model of Intraearthquake Triggering. <i>Bulletin of the Seismological Society of America</i> , 2002 , 92, 245-255	2.3	66	
26	Slip deficit on the san andreas fault at parkfield, california, as revealed by inversion of geodetic data. <i>Science</i> , 1986 , 233, 1409-13	33.3	61	
25	Material contrast does not predict earthquake rupture propagation direction. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	51	
24	Verifying a Computational Method for Predicting Extreme Ground Motion. <i>Seismological Research Letters</i> , 2011 , 82, 638-644	3	45	
23	Inverse Kinematic and Forward Dynamic Models of the 2002 Denali Fault Earthquake, Alaska. <i>Bulletin of the Seismological Society of America</i> , 2004 , 94, S214-S233	2.3	43	
22	The wrinkle-like slip pulse is not important in earthquake dynamics. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	40	
21	The 1999 Mw 7.1 Hector Mine, California, Earthquake: A Test of the Stress Shadow Hypothesis?. <i>Bulletin of the Seismological Society of America</i> , 2002 , 92, 1497-1512	2.3	37	
20	Kinematic and dynamic rupture models of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	31	
19	Imaging the Juan de Fuca Plate beneath southern Oregon using teleseismic P wave residuals. <i>Journal of Geophysical Research</i> , 1991 , 96, 19879-19889		31	
18	Introduction to the Special Issue on the 2004 Parkfield Earthquake and the Parkfield Earthquake Prediction Experiment. <i>Bulletin of the Seismological Society of America</i> , 2006 , 96, S1-S10	2.3	21	
17	The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS). <i>Seismological Research Letters</i> , 2020 , 91, 874-890	3	20	
16	Numerical Simulations of Large Earthquakes: Dynamic Rupture Propagation on Heterogeneous Faults. <i>Pure and Applied Geophysics</i> , 2004 , 161, 2171	2.2	20	
15	Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California. <i>Geophysical Research Letters</i> , 2015 , 42, 4343-4349	4.9	18	
14	Dynamic Rupture Simulations of the M6.4 and M7.1 July 2019 Ridgecrest, California, Earthquakes. <i>Geophysical Research Letters</i> , 2020 , 47, e2019GL086020	4.9	13	
13	Slip budget and potential for a M7 earthquake in central California. <i>Geophysical Research Letters</i> , 1988 , 15, 1215-1218	4.9	13	
12	Cocorp deep seismic reflection profiling in the northern Sierra Nevada, California. <i>Tectonics</i> , 1986 , 5, 321-333	4.3	13	
11	Metrics for Comparing Dynamic Earthquake Rupture Simulations. <i>Seismological Research Letters</i> , 2015 , 86, 223-235	3	11	

10	Earthquake rupture dynamics: Comparing the numerical simulation methods. <i>Eos</i> , 2004 , 85, 321	1.5	10
9	Reply to comment by Y. Ben-Zion on Material contrast does not predict earthquake rupture propagation direction [Geophysical Research Letters, 2006, 33,	4.9	8
8	Relationship between the oceanic geoid and the structure of the oceanic lithosphere. <i>Marine Geophysical Researches</i> , 1984 , 7, 177-190	2.3	7
7	Reply to comment by Y. Ben-Zion on The wrinkle-like slip pulse is not important in earthquake dynamics [Geophysical Research Letters, 2006, 33,	4.9	6
6	Comment on: Leodetic evidence for seismic potential at Parkfield, Californialby LY. Sung and D. D. Jackson. <i>Geophysical Research Letters</i> , 1989 , 16, 101-104	4.9	5
5	Numerical Simulations of Large Earthquakes: Dynamic Rupture Propagation on Heterogeneous Faults 2004 , 2171-2181		5
4	A Geology and Geodesy Based Model of Dynamic Earthquake Rupture on the Rodgers Creek-Hayward-Calaveras Fault System, California. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2020JB020577	3.6	5
3	Strong ground motions generated by earthquakes on creeping faults. <i>Geophysical Research Letters</i> , 2014 , 41, 3870-3875	4.9	4
2	Earthquake outlook for the San Francisco Bay region 20142043. <i>US Geological Survey Fact Sheet</i> ,		4
1	Stress Triggers, Stress Shadows, and Seismic Hazard. <i>International Geophysics</i> , 2003 , 81, 1217-1232		3