
William A Falls

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819760/publications.pdf Version: 2024-02-01

ΑλιιιαΜΑ ΕΛΙΙς

#	Article	IF	CITATIONS
1	Fear-potentiated startle: A neural and pharmacological analysis. Behavioural Brain Research, 1993, 58, 175-198.	1.2	664
2	Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience, 1997, 78, 1087-1104.	1.1	252
3	Normal conditioning inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medial prefrontal cortex in rats Behavioral Neuroscience, 1997, 111, 712-726.	0.6	201
4	Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): Roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology, 2009, 34, 833-843.	1.3	190
5	Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behavioral and Neural Biology, 1993, 59, 5-8.	2.3	176
6	Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex. Journal of Neuroscience, 1992, 12, 2313-2320.	1.7	151
7	The effects of intra-amygdaloid infusions of a Dâ,, dopamine receptor antagonist on Pavlovian fear conditioning Behavioral Neuroscience, 2000, 114, 647-651.	0.6	140
8	Voluntary exercise in C57 mice is anxiolytic across several measures of anxiety. Behavioural Brain Research, 2009, 197, 31-40.	1.2	119
9	Roles for Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Expression and Signaling in the Bed Nucleus of the Stria Terminalis (BNST) in Mediating the Behavioral Consequences of Chronic Stress. Journal of Molecular Neuroscience, 2010, 42, 327-340.	1.1	110
10	The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hearing Research, 1998, 115, 162-174.	0.9	109
11	Deletion in Catna2, encoding αN-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nature Genetics, 2002, 31, 279-284.	9.4	109
12	Fear-potentiated startle in two strains of inbred mice Behavioral Neuroscience, 1997, 111, 855-861.	0.6	99
13	Lesions of the central nucleus of the amygdala block conditioned excitation, but not conditioned inhibition of fear as measured with the fear-potentiated startle effect Behavioral Neuroscience, 1995, 109, 379-387.	0.6	97
14	PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology, 2014, 47, 151-165.	1.3	86
15	The Nucleus Accumbens is not Critically Involved in Mediating the Effects of a Safety Signal on Behavior. Neuropsychopharmacology, 2005, 30, 17-26.	2.8	63
16	Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits. Journal of Neurobiology, 2006, 66, 82-94.	3.7	61
17	Exercise-Associated Changes in the Corticosterone Response to Acute Restraint Stress: Evidence for Increased Adrenal Sensitivity and Reduced Corticosterone Response Duration. Neuropsychopharmacology, 2014, 39, 1262-1269.	2.8	59
18	Neural Systems Involved in Fear Inhibition: Extinction and Conditioned Inhibition. Neurobiological Foundation of Aberrant Behaviors, 2000, , 113-141.	0.2	59

WILLIAM A FALLS

#	Article	IF	CITATIONS
19	Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice. Behavioural Brain Research, 2010, 207, 321-331.	1.2	48
20	Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle Behavioral Neuroscience, 2008, 122, 943-948.	0.6	45
21	Lesions of the perirhinal cortex interfere with conditioned excitation but not with conditioned inhibition of fear Behavioral Neuroscience, 1997, 111, 476-486.	0.6	43
22	Posttraining lesions of the amygdala interfere with fear-potentiated startle to both visual and auditory conditioned stimuli in C57BL/6J mice Behavioral Neuroscience, 2000, 114, 749-759.	0.6	40
23	Lesions of the nucleus accumbens in rats reduce opiate reward but do not alter context-specific opiate tolerance Behavioral Neuroscience, 1989, 103, 1327-1334.	0.6	39
24	Visual cortex ablations do not prevent extinction of fear-potentiated startle using a visual conditioned stimulus. Behavioral and Neural Biology, 1993, 60, 259-270.	2.3	38
25	Regulation of Bed Nucleus of the Stria Terminalis PACAP Expression by Stress and Corticosterone. Journal of Molecular Neuroscience, 2014, 54, 477-484.	1.1	38
26	Lesions of the central nucleus of the amygdala block conditioned excitation, but not conditioned inhibition of fear as measured with the fear-potentiated startle effect. Behavioral Neuroscience, 1995, 109, 379-87.	0.6	37
27	C57BL/6J and DBA/2J mice differ in extinction and renewal of extinguished conditioned fear. Behavioural Brain Research, 2004, 154, 567-576.	1.2	35
28	Procedures that produce context-specific tolerance to morphine in rats also produce context-specific withdrawal Behavioral Neuroscience, 1989, 103, 842-849.	0.6	31
29	Effect of stocking density on the short-term behavioural responses of dairy cows. Applied Animal Behaviour Science, 2009, 117, 144-149.	0.8	31
30	Fear-potentiated startle using three conditioned stimulus modalities. Learning and Behavior, 1994, 22, 379-383.	3.4	30
31	Prepulse inhibition and fear-potentiated startle are altered in tissue inhibitor of metalloproteinase-2 (TIMP-2) knockout mice. Brain Research, 2005, 1051, 81-89.	1.1	30
32	A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. ELife, 2016, 5, .	2.8	29
33	The Effects of Prior Stress on Anxiety-Like Responding to Intra-BNST Pituitary Adenylate Cyclase Activating Polypeptide in Male and Female Rats. Neuropsychopharmacology, 2017, 42, 1679-1687.	2.8	27
34	Activation of ERK/MAPK in the Lateral Amygdala of the Mouse is Required for Acquisition of a Fear-Potentiated Startle response. Neuropsychopharmacology, 2009, 34, 356-366.	2.8	26
35	Fear-potentiated startle, but not prepulse inhibition of startle, is impaired in CREBαδ–/– mutant mice Behavioral Neuroscience, 2000, 114, 998-1004.	0.6	25
36	Posttraining but not pretraining lesions of the hippocampus interfere with feature-negative discrimination of fear-potentiated startle. Hippocampus, 2002, 12, 774-786.	0.9	24

WILLIAM A FALLS

#	Article	IF	CITATIONS
37	Inhibition of fear-potentiated startle can be detected after the offset of a feature trained in a serial feature-negative discrimination Journal of Experimental Psychology, 1997, 23, 3-14.	1.9	21
38	Central CRF receptor antagonist α-helical CRF9-41 blocks reinstatement of extinguished fear: The role of the bed nucleus of the stria terminalis Behavioral Neuroscience, 2008, 122, 1061-1069.	0.6	20
39	Neural Systems of Emotion:The Amygdala's Role in Fear and Anxiety. , 1995, , 3-40.		20
40	Destruction of the auditory thalamus disrupts the production of fear but not the inhibition of fear conditioned to an auditory stimulus. Brain Research, 1998, 813, 274-282.	1.1	18
41	Cell proliferation in the brains of NMDAR NR1 transgenic mice. Brain Research, 2007, 1172, 10-20.	1.1	18
42	Modulation of unconditioned defensive reflexes by a putative emotive Pavlovian conditioned stimulus Journal of Experimental Psychology, 1991, 17, 312-322.	1.9	16
43	Fearâ€Potentiated Startle in Mice. Current Protocols in Neuroscience, 2002, 19, Unit 8.11B.	2.6	16
44	Destruction of the inferior colliculus disrupts the production and inhibition of fear conditioned to an acoustic stimulus. Behavioural Brain Research, 2003, 144, 175-185.	1.2	16
45	Involvement of pertussis toxin sensitive C-proteins in conditioned fear-potentiated startle: possible involvement of the amygdala. Brain Research, 1992, 584, 141-148.	1.1	14
46	Posttraining lesions of the auditory thalamus, but not cortex, disrupt the inhibition of fear conditioned to an auditory stimulus. European Journal of Neuroscience, 2006, 23, 765-779.	1.2	12
47	Two Weeks of Variable Stress Increases Gamma-H2AX Levels in the Mouse Bed Nucleus of the Stria Terminalis. Neuroscience, 2018, 373, 137-144.	1.1	12
48	Posttraining lesion of the superior colliculus interferes with feature-negative discrimination of fear-potentiated startle. Behavioural Brain Research, 2003, 142, 115-124.	1.2	10
49	C57 Mice Increase Wheel-Running Behavior following Stress: Preliminary Findings. Perceptual and Motor Skills, 2011, 113, 605-618.	0.6	9
50	Prior stress interferes with the anxiolytic effect of exercise in c57bl/6j mice Behavioral Neuroscience, 2012, 126, 850-856.	0.6	9
51	Extended fear conditioning reveals a role for both N-methyl-d-aspartic acid and non-N-methyl-d-aspartic acid receptors in the amygdala in the acquisition of conditioned fear. Neuroscience, 2008, 155, 1011-1020.	1.1	3
52	Blockade of Conditioned Fear Requires Antagonism of Both NMDA and Nonâ€NMDA Receptors in the Amygdala. Annals of the New York Academy of Sciences, 2003, 985, 545-548.	1.8	0