Kunlong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819740/publications.pdf

Version: 2024-02-01

430874 526287 27 949 18 27 h-index citations g-index papers 27 27 27 699 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Scientific Reports, 2016, 6, 23259.	3.3	99
2	The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity. Frontiers in Microbiology, 2016, 7, 1324.	3.5	96
3	sRNA profiling in Aspergillus flavus reveals differentially expressed miRNA-like RNAs response to water activity and temperature. Fungal Genetics and Biology, 2015, 81, 113-119.	2.1	79
4	Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 2895.	3.5	58
5	The high-affinity phosphodiesterase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus. Fungal Genetics and Biology, 2017, 101, 7-19.	2.1	49
6	Proteomic profile of Aspergillus flavus in response to water activity. Fungal Biology, 2015, 119, 114-124.	2.5	48
7	Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 2016, 6, 190.	3.9	45
8	The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes. Molecular Plant-Microbe Interactions, 2019, 32, 1210-1228.	2.6	42
9	Dysfunction of <scp>FadA AMP</scp> signalling decreases <i>Aspergillus flavus</i> resistance to antimicrobial natural preservative Perillaldehyde and <scp>AFB1</scp> biosynthesis. Environmental Microbiology, 2022, 24, 1590-1607.	3.8	42
10	Cyclase-Associated Protein Cap with Multiple Domains Contributes to Mycotoxin Biosynthesis and Fungal Virulence in <i>Aspergillus flavus</i> Journal of Agricultural and Food Chemistry, 2019, 67, 4200-4213.	5.2	41
11	The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus. Toxins, 2016, 8, 202.	3.4	37
12	G Protein α Subunit GpaB is Required for Asexual Development, Aflatoxin Biosynthesis and Pathogenicity by Regulating cAMP Signaling in Aspergillus flavus. Toxins, 2018, 10, 117.	3.4	36
13	The Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus. Toxins, 2017, 9, 232.	3.4	33
14	Inhibition of aflatoxin metabolism and growth of <i> Aspergillus flavus < /i > in liquid culture by a DNA methylation inhibitor. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 554-563.</i>	2.3	32
15	Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen <i>Aspergillus flavus</i> Virulence, 2018, 9, 1273-1286.	4.4	29
16	Luteolin alleviates ochratoxin A induced oxidative stress by regulating Nrf2 and HIF- $1\hat{l}\pm$ pathways in NRK-52E rat kidney cells. Food and Chemical Toxicology, 2020, 141, 111436.	3.6	28
17	Recent development in biological activities and safety concerns of perillaldehyde from perilla plants: A review. Critical Reviews in Food Science and Nutrition, 2022, 62, 6328-6340.	10.3	26
18	Molecular and structural basis of nucleoside diphosphate kinase–mediated regulation of spore and sclerotia development in the fungus Aspergillus flavus. Journal of Biological Chemistry, 2019, 294, 12415-12431.	3.4	24

#	Article	IF	CITATION
19	The Molecular Mechanism of Perillaldehyde Inducing Cell Death in Aspergillus flavus by Inhibiting Energy Metabolism Revealed by Transcriptome Sequencing. International Journal of Molecular Sciences, 2020, 21, 1518.	4.1	22
20	Set3 Is Required for Asexual Development, Aflatoxin Biosynthesis, and Fungal Virulence in Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 530.	3.5	16
21	Functional Analysis of Peptidyl-prolyl cis-trans Isomerase from Aspergillus flavus. International Journal of Molecular Sciences, 2019, 20, 2206.	4.1	13
22	The membrane mucin Msb2 regulates aflatoxin biosynthesis and pathogenicity in fungus <i>Aspergillus flavus</i> . Microbial Biotechnology, 2021, 14, 628-642.	4.2	13
23	Investigation of Aspergillus flavus in animal virulence. Toxicon, 2018, 145, 40-47.	1.6	12
24	Regulator of G Protein Signaling Contributes to the Development and Aflatoxin Biosynthesis in Aspergillus flavus through the Regulation of \widehat{Gl} Activity. Applied and Environmental Microbiology, 2022, 88, .	3.1	11
25	Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus. International Journal of Molecular Sciences, 2020, 21, 6994.	4.1	10
26	Gas Chromatography–Mass Spectrometry Profiling of Volatile Compounds Reveals Metabolic Changes in a Non-Aflatoxigenic Aspergillus flavus Induced by 5-Azacytidine. Toxins, 2020, 12, 57.	3.4	5
27	The regulatory role of the Aspergillus flavus core retromer complex in aflatoxin metabolism. Journal of Biological Chemistry, 2022, 298, 102120.	3.4	3