Catarina E Hioe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-V3 Monoclonal Antibodies Display Broad Neutralizing Activities against Multiple HIV-1 Subtypes. PLoS ONE, 2010, 5, e10254.	1.1	128
2	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	1.8	64
3	Role of Immunoglobulin M and A Antibodies in the Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 223, 957-970.	1.9	64
4	Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope. Journal of Virology, 2014, 88, 12853-12865.	1.5	53
5	The use of immune complex vaccines to enhance antibody responses against neutralizing epitopes on HIV-1 envelope gp120. Vaccine, 2009, 28, 352-360.	1.7	51
6	In vivo alteration of humoral responses to HIV-1 envelope glycoprotein gp120 by antibodies to the CD4-binding site of gp120. Virology, 2008, 372, 409-420.	1.1	39
7	Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine, 2013, 31, 5413-5421.	1.7	39
8	Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine, 2011, 29, 9064-9074.	1.7	37
9	Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. Journal of Virology, 2016, 90, 10993-11006.	1.5	33
10	HIV Envelope gp120 Activates LFA-1 on CD4 T-Lymphocytes and Increases Cell Susceptibility to LFA-1-Targeting Leukotoxin (LtxA). PLoS ONE, 2011, 6, e23202.	1.1	32
11	Characterization of antibodies that inhibit HIV gp120 antigen processing and presentation. European Journal of Immunology, 2005, 35, 2541-2551.	1.6	30
12	Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Scientific Reports, 2018, 8, 542.	1.6	30
13	Detection of Antibody Responses Against SARS-CoV-2 in Plasma and Saliva From Vaccinated and Infected Individuals. Frontiers in Immunology, 2021, 12, 759688.	2.2	29
14	A High-Throughput Assay for Circulating Antibodies Directed Against the S Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2020, 222, 1629-1634.	1.9	27
15	Human Immunodeficiency Virus Type 1 Evades T-Helper Responses by Exploiting Antibodies That Suppress Antigen Processing. Journal of Virology, 2004, 78, 7645-7652.	1.5	26
16	The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 1560-1569.	1.2	22
17	Modulation of Antibody Responses to the V1V2 and V3 Regions of HIV-1 Envelope by Immune Complex Vaccines. Frontiers in Immunology, 2018, 9, 2441.	2.2	22
18	Anti-CD4-Binding Domain Antibodies Complexed with HIV Type 1 Glycoprotein 120 Inhibit CD4+T Cell-Proliferative Responses to Glycoprotein 120. AIDS Research and Human Retroviruses, 2000, 16, 893-905.	0.5	21

CATARINA E HIOE

#	Article	IF	CITATIONS
19	Quantitative assessment of masking of neutralization epitopes in HIV-1. Vaccine, 2011, 29, 6736-6741.	1.7	20
20	Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations. PLoS Pathogens, 2018, 14, e1006812.	2.1	20
21	Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages. PLoS ONE, 2014, 9, e108476.	1.1	19
22	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	1.7	15
23	Signal peptide of HIV-1 envelope modulates glycosylation impacting exposure of V1V2 and other epitopes. PLoS Pathogens, 2020, 16, e1009185.	2.1	14
24	P2X1 Selective Antagonists Block HIV-1 Infection through Inhibition of Envelope Conformation-Dependent Fusion. Journal of Virology, 2020, 94, .	1.5	12
25	Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS ONE, 2018, 13, e0194498.	1.1	12
26	HIV-1 Envelope Glycan Composition as a Key Determinant of Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. IScience, 2019, 21, 413-427.	1.9	11
27	Rationally Targeted Mutations at the V1V2 Domain of the HIV-1 Envelope to Augment Virus Neutralization by Anti-V1V2 Monoclonal Antibodies. PLoS ONE, 2015, 10, e0141233.	1.1	10
28	HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation. Journal of Virology, 2016, 90, 10513-10526.	1.5	10
29	Short Communication: Manα1-2Man-Binding Anti-HIV Lectins Enhance the Exposure of V2i and V3 Crown Neutralization Epitopes on the V1/V2 and V3 Hypervariable Loops of HIV-1 Envelope. AIDS Research and Human Retroviruses, 2017, 33, 941-945.	0.5	10
30	Antibodies to the CD4-binding site of HIV-1 gp120 suppress gp120-specific CD4 T cell response while enhancing antibody response. Infectious Agents and Cancer, 2008, 3, 11.	1.2	9
31	Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine, 2014, 32, 4916-4924.	1.7	9
32	Targeting a Neutralizing Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS & Clinical Research, 2012, 01, .	0.5	9
33	Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathogens, 2022, 18, e1010183.	2.1	8
34	Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines, 2021, 9, 112.	2.1	5
35	Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17 + CD4 + T cells. Journal of Leukocyte Biology, 2017, 101, 339-350.	1.5	3