David Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819572/publications.pdf

Version: 2024-02-01

1,051 papers

97,687 citations

149 h-index 275 g-index

1077 all docs

1077 docs citations

1077 times ranked

52661 citing authors

#	Article	IF	CITATIONS
1	Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26, 5474-5491.	11.4	5,351
2	Silk-based biomaterials. Biomaterials, 2003, 24, 401-416.	11.4	2,981
3	Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 2011, 6, 1612-1631.	12.0	2,265
4	Silk as a biomaterial. Progress in Polymer Science, 2007, 32, 991-1007.	24.7	2,208
5	Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 2010, 9, 511-517.	27.5	1,501
6	New Opportunities for an Ancient Material. Science, 2010, 329, 528-531.	12.6	1,224
7	Mechanism of silk processing in insects and spiders. Nature, 2003, 424, 1057-1061.	27.8	1,214
8	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	12.6	1,085
9	Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3115-3124.	11.4	1,056
10	Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules, 2006, 39, 6161-6170.	4.8	1,005
11	Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 2005, 26, 2775-2785.	11.4	884
12	Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27, 6064-6082.	11.4	869
13	Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules, 2004, 5, 718-726.	5.4	807
14	Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 2012, 3, 763.	12.8	806
15	Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002, 23, 4131-4141.	11.4	791
16	Vascularization Strategies for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 353-370.	4.8	765
17	Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research Part B, 2001, 54, 139-148.	3.1	738
18	Structure and Properties of Silk Hydrogels. Biomacromolecules, 2004, 5, 786-792.	5.4	735

#	Article	IF	CITATIONS
19	The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26, 147-155.	11.4	725
20	ElectrospinningBombyx moriSilk with Poly(ethylene oxide). Biomacromolecules, 2002, 3, 1233-1239.	5.4	679
21	In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials, 2008, 29, 3415-3428.	11.4	679
22	In vitro degradation of silk fibroin. Biomaterials, 2005, 26, 3385-3393.	11.4	657
23	Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25, 1039-1047.	11.4	596
24	Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials, 2008, 29, 1054-1064.	11.4	575
25	Cell differentiation by mechanical stress. FASEB Journal, 2002, 16, 1-13.	0.5	561
26	Water-Stable Silk Films with Reduced \hat{l}^2 -Sheet Content. Advanced Functional Materials, 2005, 15, 1241-1247.	14.9	553
27	Water-insoluble silk films with silk I structure. Acta Biomaterialia, 2010, 6, 1380-1387.	8.3	530
28	Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules, 2011, 12, 1686-1696.	5.4	530
29	Macrophage responses to silk. Biomaterials, 2003, 24, 3079-3085.	11.4	504
30	Native-sized recombinant spider silk protein produced in metabolically engineered <i>Escherichia coli</i> results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14059-14063.	7.1	485
31	Mechanisms of Silk Fibroin Solâ^Gel Transitions. Journal of Physical Chemistry B, 2006, 110, 21630-21638.	2.6	458
32	Silk Materials – A Road to Sustainable High Technology. Advanced Materials, 2012, 24, 2824-2837.	21.0	456
33	Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3, .	48.7	455
34	Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 2018, 187, 66-84.	10.2	454
35	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	48.7	440
36	Controlling silk fibroin particle features for drug delivery. Biomaterials, 2010, 31, 4583-4591.	11.4	433

#	Article	IF	CITATIONS
37	Silk implants for the healing of critical size bone defects. Bone, 2005, 37, 688-698.	2.9	416
38	In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 2005, 26, 7082-7094.	11.4	412
39	Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 2009, 19, 6443.	6.7	411
40	Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Reviews and Reports, 2009, 5, 231-246.	5.6	388
41	Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 2006, 27, 4434-4442.	11.4	386
42	Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61, 988-1006.	13.7	385
43	Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 2010, 31, 1025-1035.	11.4	372
44	Silk film biomaterials for cornea tissue engineering. Biomaterials, 2009, 30, 1299-1308.	11.4	362
45	InÂvivo bioresponses to silk proteins. Biomaterials, 2015, 71, 145-157.	11.4	357
46	Highly Tunable Elastomeric Silk Biomaterials. Advanced Functional Materials, 2014, 24, 4615-4624.	14.9	338
47	High-strength silk protein scaffolds for bone repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7699-7704.	7.1	337
48	Silkâ€Based Conformal, Adhesive, Edible Food Sensors. Advanced Materials, 2012, 24, 1067-1072.	21.0	335
49	Overview of Silk Fibroin Use in Wound Dressings. Trends in Biotechnology, 2018, 36, 907-922.	9.3	330
50	Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release, 2006, 111, 219-227.	9.9	328
51	Silk-based delivery systems of bioactive molecules. Advanced Drug Delivery Reviews, 2010, 62, 1497-1508.	13.7	324
52	Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 2018, 47, 6486-6504.	38.1	324
53	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	11.7	320
54	Engineering bone-like tissuein vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part B, 2004, 71A, 25-34.	3.1	319

#	Article	IF	CITATIONS
55	Vortex-Induced Injectable Silk Fibroin Hydrogels. Biophysical Journal, 2009, 97, 2044-2050.	0.5	317
56	Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 2008, 33, 998-1012.	24.7	316
57	Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 2020, 1, 403-415.	14.0	315
58	Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science, 2018, 85, 1-56.	24.7	312
59	Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Journal of Biomedical Materials Research Part B, 2003, 67A, 559-570.	3.1	311
60	Biocompatible Silk Printed Optical Waveguides. Advanced Materials, 2009, 21, 2411-2415.	21.0	308
61	A new route for silk. Nature Photonics, 2008, 2, 641-643.	31.4	306
62	Mechanical Properties of Electrospun Silk Fibers. Macromolecules, 2004, 37, 6856-6864.	4.8	297
63	Spider silks and their applications. Trends in Biotechnology, 2008, 26, 244-251.	9.3	291
64	Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 2014, 190, 381-397.	9.9	283
65	Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research Part B, 2004, 71A, 528-537.	3.1	282
66	Bioactive Silk Protein Biomaterial Systems for Optical Devices. Biomacromolecules, 2008, 9, 1214-1220.	5.4	281
67	Effect of processing on silkâ€based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 89-101.	3.4	281
68	Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17385-17389.	7.1	281
69	Silk microspheres for encapsulation and controlled release. Journal of Controlled Release, 2007, 117, 360-370.	9.9	276
70	Tissue Engineering and Developmental Biology: Going Biomimetic. Tissue Engineering, 2006, 12, 3265-3283.	4.6	273
71	Construction, Cloning, and Expression of Synthetic Genes Encoding Spider Dragline Silk. Biochemistry, 1995, 34, 10879-10885.	2.5	272
72	Bone tissue engineering with premineralized silk scaffolds. Bone, 2008, 42, 1226-1234.	2.9	270

#	Article	IF	Citations
73	Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymers for Advanced Technologies, 1994, 5, 401-410.	3.2	269
74	Functionalized Silk Biomaterials for Wound Healing. Advanced Healthcare Materials, 2013, 2, 206-217.	7.6	264
75	Directâ€Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications. Advanced Functional Materials, 2008, 18, 1883-1889.	14.9	261
76	Degradation Mechanism and Control of Silk Fibroin. Biomacromolecules, 2011, 12, 1080-1086.	5.4	260
77	Plant-based and cell-based approaches to meat production. Nature Communications, 2020, 11, 6276.	12.8	260
78	Dynamic Proteinâ^'Water Relationships during β-Sheet Formation. Macromolecules, 2008, 41, 3939-3948.	4.8	257
79	Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. Tissue Engineering, 2006, 12, 3285-3305.	4.6	255
80	The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials, 2011, 32, 9415-9424.	11.4	255
81	Bioengineered functional brain-like cortical tissue. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13811-13816.	7.1	255
82	Silk fibroin biomaterials for controlled release drug delivery. Expert Opinion on Drug Delivery, 2011, 8, 797-811.	5.0	248
83	Silk fibroin microtubes for blood vessel engineering. Biomaterials, 2007, 28, 5271-5279.	11.4	246
84	Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 653-664.	3.5	245
85	Silicon electronics on silk as a path to bioresorbable, implantable devices. Applied Physics Letters, 2009, 95, 133701.	3.3	245
86	Fabrication of Silk Microneedles for Controlledâ€Release Drug Delivery. Advanced Functional Materials, 2012, 22, 330-335.	14.9	245
87	All-water-based electron-beam lithography using silk as a resist. Nature Nanotechnology, 2014, 9, 306-310.	31.5	245
88	Conformational Transitions in Model Silk Peptides. Biophysical Journal, 2000, 78, 2690-2701.	0.5	244
89	Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials, 2008, 29, 2829-2838.	11.4	243
90	Role of Adult Mesenchymal Stem Cells in Bone Tissue Engineering Applications: Current Status and Future Prospects. Tissue Engineering, 2005, 11, 787-802.	4.6	240

#	Article	IF	Citations
91	Mapping Domain Structures in Silks from Insects and Spiders Related to Protein Assembly. Journal of Molecular Biology, 2004, 335, 27-40.	4.2	238
92	Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 2011, 32, 2812-2820.	11.4	238
93	Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomaterials Science and Engineering, 2016, 2, 1662-1678.	5.2	237
94	Silk-Based Advanced Materials for Soft Electronics. Accounts of Chemical Research, 2019, 52, 2916-2927.	15.6	232
95	Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 2017, 131, 58-67.	11.4	228
96	Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials, 2010, 31, 2926-2933.	11.4	227
97	Natural and genetically engineered proteins for tissue engineering. Progress in Polymer Science, 2012, 37, 1-17.	24.7	227
98	Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. Journal of Polymer Science Part A, 1991, 29, 1561-1574.	2.3	225
99	Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32, 2642-2650.	11.4	225
100	Biomaterial Films ofBombyxMoriSilk Fibroin with Poly(ethylene oxide). Biomacromolecules, 2004, 5, 711-717.	5.4	224
101	Design and function of biomimetic multilayer water purification membranes. Science Advances, 2017, 3, e1601939.	10.3	221
102	Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 2015, 11, 27-36.	8.3	220
103	Silk inverse opals. Nature Photonics, 2012, 6, 818-823.	31.4	217
104	Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics A: Materials Science and Processing, 2006, 82, 223-233.	2.3	215
105	Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Scientific Reports, 2013, 3, 3432.	3.3	215
106	Silk based biomaterials to heal critical sized femur defects. Bone, 2006, 39, 922-931.	2.9	214
107	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	8.3	210
108	Electrical and mechanical stimulation of cardiac cells and tissue constructs. Advanced Drug Delivery Reviews, 2016, 96, 135-155.	13.7	210

#	Article	IF	Citations
109	Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nature Communications, 2017, 8, 1387.	12.8	208
110	Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2008, 3, e3737.	2.5	206
111	Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomaterialia, 2014, 10, 1612-1626.	8.3	206
112	Liquid crystallinity of natural silk secretions. Nature, 1991, 349, 596-598.	27.8	203
113	Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2in vitro andin vivo. Journal of Biomedical Materials Research - Part A, 2006, 78A, 324-334.	4.0	201
114	Tunable Self-Assembly of Genetically Engineered Silk–Elastin-like Protein Polymers. Biomacromolecules, 2011, 12, 3844-3850.	5.4	199
115	3D in vitro modeling of the central nervous system. Progress in Neurobiology, 2015, 125, 1-25.	5.7	196
116	Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9428-9433.	7.1	194
117	Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials, 2009, 30, 4522-4532.	11.4	194
118	pHâ€Dependent Anticancer Drug Release from Silk Nanoparticles. Advanced Healthcare Materials, 2013, 2, 1606-1611.	7.6	192
119	Carbonization of a stable \hat{l}^2 -sheet-rich silk protein into a pseudographitic pyroprotein. Nature Communications, 2015, 6, 7145.	12.8	192
120	Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with inÂvitro and inÂvivo assessments. Biomaterials, 2017, 117, 105-115.	11.4	189
121	The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials, 2011, 32, 8979-8989.	11.4	188
122	Enzyme-Catalyzed Ring-Opening Polymerization of ï‰-Pentadecalactoneâ€. Macromolecules, 1997, 30, 2705-2711.	4.8	187
123	Insoluble and Flexible Silk Films Containing Glycerol. Biomacromolecules, 2010, 11, 143-150.	5.4	187
124	Silk Fibroin Microfluidic Devices. Advanced Materials, 2007, 19, 2847-2850.	21.0	182
125	Cartilage-like Tissue Engineering Using Silk Scaffolds and Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 2729-2738.	4.6	181
126	Nano―and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films. Advanced Materials, 2008, 20, 3070-3072.	21.0	181

#	Article	IF	Citations
127	Silk Self-Assembly Mechanisms and Control From Thermodynamics to Kinetics. Biomacromolecules, 2012, 13, 826-832.	5.4	180
128	Bioâ€microfluidics: Biomaterials and Biomimetic Designs. Advanced Materials, 2010, 22, 249-260.	21.0	178
129	3D Bioprinting of Selfâ€Standing Silkâ€Based Bioink. Advanced Healthcare Materials, 2018, 7, e1701026.	7.6	177
130	Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 2013, 9, 6771-6782.	8.3	176
131	Stabilization of Enzymes in Silk Films. Biomacromolecules, 2009, 10, 1032-1042.	5.4	174
132	Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions. Advanced Materials, 2015, 27, 4273-4279.	21.0	174
133	Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. ACS Applied Materials & Delivery. Interfaces, 2016, 8, 17118-17126.	8.0	172
134	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	11.4	171
135	Processing methods to control silk fibroin film biomaterial features. Journal of Materials Science, 2008, 43, 6967-6985.	3.7	170
136	Effect of water on the thermal properties of silk fibroin. Thermochimica Acta, 2007, 461, 137-144.	2.7	168
137	Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Materials Science and Engineering C, 2008, 28, 1420-1429.	7.3	168
138	Electrogelation for Protein Adhesives. Advanced Materials, 2010, 22, 711-715.	21.0	168
139	Biomaterials from Ultrasonication-Induced Silk Fibroinâ^'Hyaluronic Acid Hydrogels. Biomacromolecules, 2010, 11, 3178-3188.	5.4	168
140	Silk Fibroin as Edible Coating for Perishable Food Preservation. Scientific Reports, 2016, 6, 25263.	3.3	168
141	Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 84-90.	3.4	167
142	Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials, 2010, 31, 8953-8963.	11.4	164
143	Antibioticâ€Releasing Silk Biomaterials for Infection Prevention and Treatment. Advanced Functional Materials, 2013, 23, 854-861.	14.9	164
144	Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials, 2020, 232, 119720.	11.4	163

#	Article	IF	Citations
145	The use of silk-based devices for fracture fixation. Nature Communications, 2014, 5, 3385.	12.8	160
146	Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk. Biomacromolecules, 2018, 19, 3853-3860.	5.4	159
147	A 3D human brain–like tissue model of herpes-induced Alzheimer's disease. Science Advances, 2020, 6, eaay8828.	10.3	159
148	Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Applied Physics Letters, 2010, 97, .	3.3	158
149	Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Advanced Functional Materials, 2013, 23, 5140-5149.	14.9	157
150	Lipase-Catalyzed Ring-Opening Polymerization of Trimethylene Carbonateâ€. Macromolecules, 1997, 30, 7735-7742.	4.8	156
151	NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomaterialia, 2018, 67, 183-195.	8.3	155
152	Tunable Silk: Using Microfluidics to Fabricate Silk Fibers with Controllable Properties. Biomacromolecules, 2011, 12, 1504-1511.	5.4	154
153	Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials, 2012, 33, 6691-6697.	11.4	154
154	Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23632-23638.	8.0	154
155	Recombinant <scp>DNA</scp> production of spider silk proteins. Microbial Biotechnology, 2013, 6, 651-663.	4.2	153
156	VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation., 2014, 27, 1-12.		153
157	Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11981-11986.	7.1	148
158	Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Advanced Functional Materials, 2018, 28, 1705291.	14.9	148
159	Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy. Biophysical Journal, 2012, 103, 868-877.	0.5	147
160	Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials, 2010, 31, 6162-6172.	11.4	146
161	Corneal Tissue Engineering: Recent Advances and Future Perspectives. Tissue Engineering - Part B: Reviews, 2015, 21, 278-287.	4.8	146
162	Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 260-270.	5.2	146

#	Article	IF	Citations
163	Ultrathin Free-Standing <i>Bombyx mori</i> Silk Nanofibril Membranes. Nano Letters, 2016, 16, 3795-3800.	9.1	146
164	Functional, RFâ€Trilayer Sensors for Toothâ€Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption. Advanced Materials, 2018, 30, e1703257.	21.0	146
165	Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials, 2018, 8, 126.	4.1	144
166	Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals. Scientific Reports, 2013, 3, 1130.	3.3	143
167	Impact of silk biomaterial structure on proteolysis. Acta Biomaterialia, 2015, 11, 212-221.	8.3	142
168	Ethyl Glucoside as a Multifunctional Initiator for Enzyme-Catalyzed Regioselective Lactone Ring-Opening Polymerization. Journal of the American Chemical Society, 1998, 120, 1363-1367.	13.7	141
169	Biomaterials derived from silk–tropoelastin protein systems. Biomaterials, 2010, 31, 8121-8131.	11.4	141
170	Clinical correlates in an experimental model of repetitive mild brain injury. Annals of Neurology, 2013, 74, 65-75.	5.3	141
171	Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood, 2015, 125, 2254-2264.	1.4	140
172	Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Advanced Materials, 2010, 22, 1746-1749.	21.0	139
173	Silk fibroin for skin injury repair: Where do things stand?. Advanced Drug Delivery Reviews, 2020, 153, 28-53.	13.7	139
174	Physical and chemical aspects of stabilization of compounds in silk. Biopolymers, 2012, 97, 479-498.	2.4	138
175	Thermoplastic moulding of regenerated silk. Nature Materials, 2020, 19, 102-108.	27.5	138
176	Directâ€Write Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Coâ€Cultures. Advanced Healthcare Materials, 2012, 1, 729-735.	7.6	136
177	Sustainable Release of Vancomycin from Silk Fibroin Nanoparticles for Treating Severe Bone Infection in Rat Tibia Osteomyelitis Model. ACS Applied Materials & Interfaces, 2017, 9, 5128-5138.	8.0	135
178	Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 2015, 84, 107-122.	13.7	134
179	Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices. Advanced Materials, 2016, 28, 7783-7790.	21.0	134
180	Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nature Nanotechnology, 2017, 12, 474-480.	31.5	134

#	Article	IF	Citations
181	Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31, 8902-8910.	11.4	133
182	Highâ€Strength, Durable Allâ€Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications. Advanced Functional Materials, 2018, 28, 1704757.	14.9	133
183	Bone Regeneration on Macroporous Aqueous-Derived Silk 3-D Scaffolds. Macromolecular Bioscience, 2007, 7, 643-655.	4.1	132
184	Selfâ€Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer. Advanced Functional Materials, 2013, 23, 58-65.	14.9	132
185	Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials, 2015, 56, 68-77.	11.4	132
186	Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Advanced Materials, 2016, 28, 2417-2420.	21.0	132
187	Silk polymer-based adenosine release: Therapeutic potential for epilepsy. Biomaterials, 2008, 29, 3609-3616.	11.4	131
188	Gel spinning of silk tubes for tissue engineering. Biomaterials, 2008, 29, 4650-4657.	11.4	131
189	Robust bioengineered 3D functional human intestinal epithelium. Scientific Reports, 2015, 5, 13708.	3.3	131
190	Silkâ€Based Biomaterials in Biomedical Textiles and Fiberâ€Based Implants. Advanced Healthcare Materials, 2015, 4, 1134-1151.	7.6	130
191	Effect of Hydration on Silk Film Material Properties. Macromolecular Bioscience, 2010, 10, 393-403.	4.1	129
192	Silk fibroin electrogelation mechanisms. Acta Biomaterialia, 2011, 7, 2394-2400.	8.3	128
193	<i>In Vitro</i> 3D Model for Human Vascularized Adipose Tissue. Tissue Engineering - Part A, 2009, 15, 2227-2236.	3.1	127
194	Stabilization and Release of Enzymes from Silk Films. Macromolecular Bioscience, 2010, 10, 359-368.	4.1	127
195	Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia, 2012, 8, 2185-2192.	8.3	127
196	The Use of Functionalized Silk Fibroin Films as a Platform for Optical Diffractionâ€Based Sensing Applications. Advanced Materials, 2017, 29, 1605471.	21.0	127
197	Evidence of a Cholesteric Liquid Crystalline Phase in Natural Silk Spinning Processes. Macromolecules, 1996, 29, 5106-5110.	4.8	126
198	Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery. Biomacromolecules, 2014, 15, 908-914.	5.4	126

#	Article	lF	CITATION
199	The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials, 2007, 28, 2358-2367.	11.4	125
200	Response of Human Corneal Fibroblasts on Silk Film Surface Patterns. Macromolecular Bioscience, 2010, 10, 664-673.	4.1	124
201	Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12052-12057.	7.1	122
202	Dityrosine Cross-Linking in Designing Biomaterials. ACS Biomaterials Science and Engineering, 2016, 2, 2108-2121.	5.2	121
203	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	47.7	121
204	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	14.9	120
205	Mechanisms and Control of Silk-Based Electrospinning. Biomacromolecules, 2012, 13, 798-804.	5.4	119
206	Bioengineered silk protein-based gene delivery systems. Biomaterials, 2009, 30, 5775-5784.	11.4	118
207	Expression, Cross-Linking, and Characterization of Recombinant Chitin Binding Resilin. Biomacromolecules, 2009, 10, 3227-3234.	5.4	118
208	Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomaterialia, 2012, 8, 2628-2638.	8.3	118
209	Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nature Communications, 2015, 6, 6892.	12.8	118
210	Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning. Macromolecules, 2006, 39, 1102-1107.	4.8	117
211	Silk-based stabilization of biomacromolecules. Journal of Controlled Release, 2015, 219, 416-430.	9.9	117
212	A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials, 2010, 31, 3920-3929.	11.4	116
213	Self-Assembly of Genetically Engineered Spider Silk Block Copolymers. Biomacromolecules, 2009, 10, 229-236.	5.4	115
214	Osteogenic Differentiation of Human Bone Marrow Stromal Cells on Partially Demineralized Bone Scaffoldsin Vitro. Tissue Engineering, 2004, 10, 81-92.	4.6	114
215	A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials, 2012, 33, 9214-9224.	11.4	114
216	Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials, 2008, 29, 2556-2563.	11.4	113

#	Article	IF	Citations
217	In vitro 3D Fullâ€Thickness Skinâ€Equivalent Tissue Model Using Silk and Collagen Biomaterials. Macromolecular Bioscience, 2012, 12, 1627-1636.	4.1	113
218	Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Acta Biomaterialia, 2011, 7, 144-151.	8.3	112
219	Implantable, multifunctional, bioresorbable optics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19584-19589.	7.1	112
220	Silk as a Multifunctional Biomaterial Substrate for Reduced Glial Scarring around Brainâ€Penetrating Electrodes. Advanced Functional Materials, 2013, 23, 3185-3193.	14.9	111
221	Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content. Biomacromolecules, 2014, 15, 3044-3051.	5.4	110
222	Tropoelastin: A versatile, bioactive assembly module. Acta Biomaterialia, 2014, 10, 1532-1541.	8.3	110
223	Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials, 2015, 73, 272-283.	11.4	110
224	Reinforcing Silk Scaffolds with Silk Particles. Macromolecular Bioscience, 2010, 10, 599-611.	4.1	109
225	Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood, 2014, 124, 3250-3259.	1.4	109
226	Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials, 2011, 32, 1059-1067.	11.4	108
227	Engineered cell and tissue models of pulmonary fibrosis. Advanced Drug Delivery Reviews, 2018, 129, 78-94.	13.7	108
228	Injectable silk-polyethylene glycol hydrogels. Acta Biomaterialia, 2015, 12, 51-61.	8.3	106
229	Bioengineered 3D Human Kidney Tissue, a Platform for the Determination of Nephrotoxicity. PLoS ONE, 2013, 8, e59219.	2.5	105
230	Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opinion on Drug Delivery, 2015, 12, 779-791.	5.0	104
231	Permeability of bacterial cellulose membranes. Journal of Membrane Science, 2006, 272, 15-27.	8.2	103
232	Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules, 2016, 17, 237-245.	5.4	102
233	Bio-functionalized silk hydrogel microfluidic systems. Biomaterials, 2016, 93, 60-70.	11.4	101
234	Doxorubicin-loaded silk films: Drug-silk interactions and inÂvivo performance in human orthotopic breast cancer. Biomaterials, 2012, 33, 8442-8450.	11.4	100

#	Article	IF	Citations
235	Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl 2 –formic acid solvent. Acta Biomaterialia, 2015, 12, 139-145.	8.3	100
236	Fetal Brain Extracellular Matrix Boosts Neuronal Network Formation in 3D Bioengineered Model of Cortical Brain Tissue. ACS Biomaterials Science and Engineering, 2016, 2, 131-140.	5.2	100
237	Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Experimental Neurology, 2009, 219, 126-135.	4.1	99
238	Controllable transition of silk fibroin nanostructures: An insight into in vitro silk self-assembly process. Acta Biomaterialia, 2013, 9, 7806-7813.	8.3	99
239	Printing of stretchable silk membranes for strain measurements. Lab on A Chip, 2016, 16, 2459-2466.	6.0	99
240	Nanoscale Silk–Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS Applied Materials & Amp; Interfaces, 2017, 9, 16913-16921.	8.0	99
241	Enzymatic Degradation of <i>Bombyx mori</i> Silk Materials: A Review. Biomacromolecules, 2020, 21, 1678-1686.	5.4	99
242	Lessons from seashells: silica mineralization via protein templating. Trends in Biotechnology, 2004, 22, 577-585.	9.3	98
243	Multifunctional silk–heparin biomaterials for vascular tissue engineering applications. Biomaterials, 2014, 35, 83-91.	11.4	98
244	Silk dissolution and regeneration at the nanofibril scale. Journal of Materials Chemistry B, 2014, 2, 3879.	5.8	98
245	InÂvitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials, 2017, 112, 1-9.	11.4	98
246	Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Advanced Materials, 2018, 30, e1800598.	21.0	98
247	Design and Fabrication of Silk Templated Electronic Yarns and Applications in Multifunctional Textiles. Matter, 2019, 1, 1411-1425.	10.0	98
248	Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials, 2014, 35, 3744-3755.	11.4	97
249	Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 271-278.	4.3	96
250	Silk Biomaterials with Vascularization Capacity. Advanced Functional Materials, 2016, 26, 421-432.	14.9	96
251	Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8878-8895.	8.0	96
252	Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 2021, 276, 120995.	11.4	96

#	Article	IF	Citations
253	Characterization of barnacle (Balanus eburneus and B. cenatus  ) adhesive proteins. Marine Biology, 1997, 127, 629-635.	1.5	93
254	Antimicrobial functionalized genetically engineered spider silk. Biomaterials, 2011, 32, 4255-4266.	11.4	92
255	Silk I and Silk II studied by fast scanning calorimetry. Acta Biomaterialia, 2017, 55, 323-332.	8.3	92
256	Bilayered vascular grafts based on silk proteins. Acta Biomaterialia, 2013, 9, 8991-9003.	8.3	91
257	Gene delivery mediated by recombinant silk proteins containing cationic and cell binding motifs. Journal of Controlled Release, 2010, 146, 136-143.	9.9	90
258	Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials, 2011, 32, 9231-9243.	11.4	90
259	Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21861-21868.	8.0	90
260	Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomaterialia, 2012, 8, 1530-1542.	8.3	89
261	Salt-Leached Silk Scaffolds with Tunable Mechanical Properties. Biomacromolecules, 2012, 13, 3723-3729.	5.4	88
262	In vitro bioengineered model of cortical brain tissue. Nature Protocols, 2015, 10, 1362-1373.	12.0	87
263	Hydrogel Assembly with Hierarchical Alignment by Balancing Electrostatic Forces. Advanced Materials Interfaces, 2016, 3, 1500687.	3.7	87
264	Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromolecular Bioscience, 2016, 16, 472-481.	4.1	87
265	Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. Journal of Controlled Release, 2010, 144, 159-167.	9.9	86
266	Silk–Its Mysteries, How It Is Made, and How It Is Used. ACS Biomaterials Science and Engineering, 2015, 1, 864-876.	5.2	85
267	Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS Nano, 2018, 12, 6968-6977.	14.6	85
268	Tissue-Engineered Three-Dimensional <i>In Vitro</i> Models for Normal and Diseased Kidney. Tissue Engineering - Part A, 2010, 16, 2821-2831.	3.1	84
269	Biocompatible silk step-index optical waveguides. Biomedical Optics Express, 2015, 6, 4221.	2.9	84
270	Polyol-Silk Bioink Formulations as Two-Part Room-Temperature Curable Materials for 3D Printing. ACS Biomaterials Science and Engineering, 2015, 1, 780-788.	5.2	84

#	Article	IF	Citations
271	Silk–Hydroxyapatite Nanoscale Scaffolds with Programmable Growth Factor Delivery for Bone Repair. ACS Applied Materials & lnterfaces, 2016, 8, 24463-24470.	8.0	84
272	Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk–Elastinâ€Like Proteins. Advanced Functional Materials, 2016, 26, 4113-4123.	14.9	83
273	Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light. Advanced Materials, 2017, 29, 1702769.	21.0	83
274	3D freeform printing of silk fibroin. Acta Biomaterialia, 2018, 71, 379-387.	8.3	83
275	Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology, 2022, 5, .	4.4	83
276	Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Research, 2009, 84, 238-241.	1.6	82
277	Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective. Advanced Functional Materials, 2010, 20, 840-846.	14.9	82
278	Non-equilibrium silk fibroin adhesives. Journal of Structural Biology, 2010, 170, 406-412.	2.8	81
279	Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomedical Materials (Bristol), 2015, 10, 034105.	3.3	81
280	Nanoscale Control of Silica Particle Formation via Silkâ^'Silica Fusion Proteins for Bone Regeneration. Chemistry of Materials, 2010, 22, 5780-5785.	6.7	80
281	Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomaterialia, 2015, 20, 22-31.	8.3	80
282	Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods, 2019, 8, 521.	4.3	80
283	3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nature Communications, 2019, 10, 4529.	12.8	80
284	Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomaterialia, 2017, 63, 76-84.	8.3	79
285	In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE, 2017, 12, e0187880.	2.5	79
286	The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials, 2010, 31, 1403-1413.	11.4	78
287	Proteinâ€Protein Nanoimprinting of Silk Fibroin Films. Advanced Materials, 2013, 25, 2409-2414.	21.0	78
288	Arrayed Hollow Channels in Silkâ€Based Scaffolds Provide Functional Outcomes for Engineering Critically Sized Tissue Constructs. Advanced Functional Materials, 2014, 24, 2188-2196.	14.9	78

#	Article	IF	CITATIONS
289	Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochimica Acta, 2015, 615, 8-14.	2.7	78
290	Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nature Communications, 2016, 7, 13079.	12.8	78
291	Programming function into mechanical forms by directed assembly of silk bulk materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 451-456.	7.1	78
292	Enzyme-Mediated Free Radical Polymerization of Styrene. Biomacromolecules, 2000, 1, 592-596.	5.4	77
293	Low-threshold blue lasing from silk fibroin thin films. Applied Physics Letters, 2012, 101, 091110.	3.3	77
294	Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios. Biomaterials, 2012, 33, 5341-5348.	11.4	77
295	Silk apatite composites from electrospun fibers. Journal of Materials Research, 2005, 20, 3374-3384.	2.6	76
296	Mechanisms of Controlled Release from Silk Fibroin Films. Biomacromolecules, 2011, 12, 804-812.	5.4	76
297	A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships. Biomaterials, 2012, 33, 8240-8255.	11.4	76
298	Tissue-engineered kidney disease models. Advanced Drug Delivery Reviews, 2014, 69-70, 67-80.	13.7	76
299	Accurately Shaped Tooth Bud Cell–Derived Mineralized Tissue Formation on Silk Scaffolds. Tissue Engineering - Part A, 2008, 14, 549-557.	3.1	74
300	Effect of Silk Protein Processing on Drug Delivery from Silk Films. Macromolecular Bioscience, 2013, 13, 311-320.	4.1	74
301	Strategies for improving the physiological relevance of human engineered tissues. Trends in Biotechnology, 2015, 33, 401-407.	9.3	74
302	Silk-based blood stabilization for diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5892-5897.	7.1	74
303	Low-Density Silk Nanofibrous Aerogels: Fabrication and Applications in Air Filtration and Oil/Water Purification. ACS Nano, 2021, 15, 1048-1058.	14.6	74
304	Recent advances in 3D printing with protein-based inks. Progress in Polymer Science, 2021, 115, 101375.	24.7	74
305	Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides. Acta Biomaterialia, 2013, 9, 4935-4943.	8.3	73
306	Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomaterialia, 2014, 10, 921-930.	8.3	73

#	Article	IF	Citations
307	Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials, 2020, 233, 119729.	11.4	73
308	Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy. Biomaterials, 2008, 29, 2015-2024.	11.4	72
309	Bioelectric modulation of macrophage polarization. Scientific Reports, 2016, 6, 21044.	3.3	72
310	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	8.3	72
311	Novel Bioengineered Three-Dimensional Human Intestinal Model for Long-Term Infection of Cryptosporidium parvum. Infection and Immunity, 2017, 85, .	2.2	71
312	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	21.0	71
313	Unfolding the multi-length scale domain structure of silk fibroin protein. Polymer, 2006, 47, 5821-5830.	3.8	70
314	Silk Fibroin Solution Properties Related to Assembly and Structure. Macromolecular Bioscience, 2008, 8, 1006-1018.	4.1	70
315	Revealing eltrombopags promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica, 2016, 101, 1479-1488.	3.5	70
316	Polycystin 2 regulates mitochondrial Ca $<$ sup $>$ 2+ $<$ /sup $>$ signaling, bioenergetics, and dynamics through mitofusin 2. Science Signaling, 2019, 12, .	3.6	70
317	Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials, 2013, 34, 7766-7775.	11.4	69
318	Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 1889-1908.	3.1	69
319	The Effect of Sterilization on Silk Fibroin Biomaterial Properties. Macromolecular Bioscience, 2015, 15, 861-874.	4.1	69
320	The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems. Advanced Healthcare Materials, 2016, 5, 1667-1677.	7.6	69
321	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
322	Bioelectric modulation of wound healing in a 3D inÂvitro model of tissue-engineered bone. Biomaterials, 2013, 34, 6695-6705.	11.4	68
323	Synthesis of Silk Fibroin Micro―and Submicron Spheres Using a Coâ€Flow Capillary Device. Advanced Materials, 2014, 26, 1105-1110.	21.0	68
324	Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends in Food Science and Technology, 2020, 98, 53-67.	15.1	68

#	Article	IF	Citations
325	Natural Silk Nanofibril Aerogels with Distinctive Filtration Capacity and Heat-Retention Performance. ACS Nano, 2021, 15, 8171-8183.	14.6	68
326	Direct Formation of Silk Nanoparticles for Drug Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 2050-2057.	5.2	67
327	Anisotropic Biomimetic Silk Scaffolds for Improved Cell Migration and Healing of Skin Wounds. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44314-44323.	8.0	67
328	Co-cross-linking Silk Matrices with Silica Nanostructures for Robust Ultrathin Nanocomposites. ACS Nano, 2010, 4, 7053-7063.	14.6	66
329	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19870-19875.	8.0	66
330	Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Frontiers in Chemistry, 2014, 2, 40.	3.6	65
331	Microphase Separation Controlled \hat{l}^2 -Sheet Crystallization Kinetics in Fibrous Proteins. Macromolecules, 2009, 42, 2079-2087.	4.8	64
332	Functionalizedâ€Silkâ€Based Active Optofluidic Devices. Advanced Functional Materials, 2010, 20, 1083-1089.	14.9	64
333	Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials. Biomacromolecules, 2016, 17, 3000-3006.	5 . 4	64
334	Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. Stem Cell Reports, 2016, 7, 557-570.	4.8	64
335	Injectable Silk Nanofiber Hydrogels for Sustained Release of Small-Molecule Drugs and Vascularization. ACS Biomaterials Science and Engineering, 2019, 5, 4077-4088.	5.2	64
336	Flexibility Regeneration of Silk Fibroin in Vitro. Biomacromolecules, 2012, 13, 2148-2153.	5.4	63
337	lon electrodiffusion governs silk electrogelation. Soft Matter, 2012, 8, 6897.	2.7	63
338	Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk. Small, 2013, 9, 3704-3713.	10.0	63
339	Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue. Tissue Engineering - Part C: Methods, 2013, 19, 745-754.	2.1	63
340	Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 477-482.	7.1	63
341	Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14602-14608.	7.1	63
342	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62, 367-391.	19.3	62

#	Article	IF	Citations
343	Cell-Based Fish: A Novel Approach to Seafood Production and an Opportunity for Cellular Agriculture. Frontiers in Sustainable Food Systems, 0, 3, .	3.9	62
344	Biopolymer Nanoscale Assemblies as Building Blocks for New Materials: A Review. Advanced Functional Materials, 2021, 31, 2008552.	14.9	62
345	Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices. Optics Express, 2007, 15, 1043.	3.4	61
346	The influence of specific binding of collagen–silk chimeras to silk biomaterials on hMSC behavior. Biomaterials, 2013, 34, 402-412.	11.4	61
347	Sequence–Structure–Property Relationships of Recombinant Spider Silk Proteins: Integration of Biopolymer Design, Processing, and Modeling. Advanced Functional Materials, 2013, 23, 241-253.	14.9	61
348	Porous Silk Scaffolds for Delivery of Growth Factors and Stem Cells to Enhance Bone Regeneration. PLoS ONE, 2014, 9, e102371.	2.5	61
349	Tissue engineering a surrogate niche for metastatic cancer cells. Biomaterials, 2015, 51, 313-319.	11.4	61
350	Multifunctionalized Electrospun Silk Fibers Promote Axon Regeneration in the Central Nervous System. Advanced Functional Materials, 2011, 21, 4232-4242.	14.9	60
351	Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. British Journal of Cancer, 2014, 111, 708-715.	6.4	60
352	Biocompatibility of silk-tropoelastin protein polymers. Biomaterials, 2014, 35, 5138-5147.	11.4	60
353	A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials, 2010, 31, 7883-7891.	11.4	59
354	Human corneal limbal epithelial cell response to varying silk film geometric topography in vitro. Acta Biomaterialia, 2012, 8, 3732-3743.	8.3	59
355	High Throughput Screening of Dynamic Silkâ€Elastinâ€Like Protein Biomaterials. Advanced Functional Materials, 2014, 24, 4303-4310.	14.9	59
356	<scp>I /scp>mpact of Sterilization on the Enzymatic Degradation and Mechanical Properties of Silk Biomaterials. Macromolecular Bioscience, 2014, 14, 257-269.</scp>	4.1	59
357	Modulation of vincristine and doxorubicin binding and release from silk films. Journal of Controlled Release, 2015, 220, 229-238.	9.9	59
358	Silk Fibroin Degradation Related to Rheological and Mechanical Properties. Macromolecular Bioscience, 2016, 16, 666-675.	4.1	59
359	Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2019, 13, 307.	3.7	59
360	3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials, 2019, 198, 194-203.	11.4	59

#	Article	IF	Citations
361	Complementary Effects of Two Growth Factors in Multifunctionalized Silk Nanofibers for Nerve Reconstruction. PLoS ONE, 2014, 9, e109770.	2.5	59
362	Robust and Responsive Silk Ionomer Microcapsules. Biomacromolecules, 2011, 12, 4319-4325.	5.4	58
363	Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate. Journal of Materials Chemistry B, 2014, 2, 6590-6600.	5.8	58
364	Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. ACS Biomaterials Science and Engineering, 2015, 1, 964-970.	5.2	58
365	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	6.1	58
366	Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2019, 25, 202-224.	4.8	58
367	Silk Fibroin Microneedle Patches for the Sustained Release of Levonorgestrel. ACS Applied Bio Materials, 2020, 3, 5375-5382.	4.6	58
368	Ultrasound Sonication Effects on Silk Fibroin Protein. Macromolecular Materials and Engineering, 2013, 298, 1201-1208.	3.6	57
369	Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds. Biomaterials, 2014, 35, 6941-6953.	11.4	57
370	Biomineralization of Stable and Monodisperse Vaterite Microspheres Using Silk Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1735-1745.	8.0	57
371	A mild process to design silk scaffolds with reduced \hat{l}^2 -sheet structure and various topographies at the nanometer scale. Acta Biomaterialia, 2015, 13, 168-176.	8.3	57
372	Isolation of Silk Mesostructures for Electronic and Environmental Applications. Advanced Functional Materials, 2018, 28, 1806380.	14.9	57
373	Mechanical improvements to reinforced porous silk scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 99A, 16-28.	4.0	56
374	Microfabricated Porous Silk Scaffolds for Vascularizing Engineered Tissues. Advanced Functional Materials, 2013, 23, 3404-3412.	14.9	56
375	Injectable Silk Foams for Soft Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 452-459.	7.6	56
376	Control of silk microsphere formation using polyethylene glycol (PEG). Acta Biomaterialia, 2016, 39, 156-168.	8.3	56
377	Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Advanced Drug Delivery Reviews, 2020, 160, 186-198.	13.7	56
378	Engineering silk materials: From natural spinning to artificial processing. Applied Physics Reviews, 2020, 7, .	11.3	56

#	Article	IF	Citations
379	Quantifying Osteogenic Cell Degradation of Silk Biomaterials. Biomacromolecules, 2010, 11, 3592-3599.	5.4	55
380	Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands. Insect Biochemistry and Molecular Biology, 2015, 65, 100-106.	2.7	55
381	Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 360-369.	5.2	55
382	Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials, 2017, 116, 34-47.	11.4	55
383	Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Scientific Reports, 2017, 7, 4092.	3.3	55
384	Conformation and dynamics of soluble repetitive domain elucidates the initial \hat{l}^2 -sheet formation of spider silk. Nature Communications, 2018, 9, 2121.	12.8	55
385	Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins. Macromolecular Rapid Communications, 2019, 40, e1800390.	3.9	55
386	Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS ONE, 2021, 16, e0245685.	2.5	55
387	3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS ONE, 2017, 12, e0169504.	2.5	55
388	pH-Sensitive Ionomeric Particles Obtained via Chemical Conjugation of Silk with Poly(amino acid)s. Biomacromolecules, 2010, 11, 3406-3412.	5.4	54
389	The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury. Biomaterials, 2014, 35, 7452-7459.	11.4	54
390	Functional Material Features of <i>Bombyx mori</i> Silk Light versus Heavy Chain Proteins. Biomacromolecules, 2015, 16, 606-614.	5.4	54
391	Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 2015, 70, 48-56.	11.4	54
392	Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin. Biomacromolecules, 2016, 17, 3570-3579.	5.4	54
393	Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels. Composites Part B: Engineering, 2019, 176, 107204.	12.0	54
394	In Situ 3D Printing: Opportunities with Silk Inks. Trends in Biotechnology, 2021, 39, 719-730.	9.3	54
395	Biomimetic composites via molecular scale self-assembly and biomineralization. Current Opinion in Solid State and Materials Science, 2003, 7, 265-271.	11.5	53
396	Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release. Biomaterials, 2011, 32, 909-918.	11.4	53

#	Article	IF	CITATIONS
397	Genomeâ€wide analysis reveals conserved transcriptional responses downstream of resting potential change in <i>Xenopus</i> embryos, axolotl regeneration, and human mesenchymal cell differentiation. Regeneration (Oxford, England), 2016, 3, 3-25.	6.3	53
398	Comparative Study of Strainâ€Dependent Structural Changes of Silkworm Silks: Insight into the Structural Origin of Strainâ€Stiffening. Small, 2017, 13, 1702266.	10.0	53
399	Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9290-9300.	8.0	53
400	Oral Delivery of Curcumin Using Silk Nano- and Microparticles. ACS Biomaterials Science and Engineering, 2018, 4, 3885-3894.	5.2	53
401	From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Advanced Healthcare Materials, 2020, 9, e1901552.	7.6	53
402	Biofunctional Silk/Neuron Interfaces. Advanced Functional Materials, 2012, 22, 1871-1884.	14.9	52
403	Remodeling of tissue-engineered bone structures in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 119-129.	4.3	52
404	Filmâ€Based Implants for Supporting Neuron–Electrode Integrated Interfaces for The Brain. Advanced Functional Materials, 2014, 24, 1938-1948.	14.9	52
405	Biomimetic Magnetic Silk Scaffolds. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6282-6292.	8.0	52
406	Conductive Silkâ€Based Composites Using Biobased Carbon Materials. Advanced Materials, 2019, 31, e1904720.	21.0	52
407	3D porous scaffolds from wheat glutenin for cultured meat applications. Biomaterials, 2022, 285, 121543.	11.4	52
408	PEROXIDASE-CATALYZED CROSSIINKING OF FUNCTIONALIZED POLYASPARTIC ACID POLYMERS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 1151-1181.	2.2	51
409	Laminar Silk Scaffolds for Aligned Tissue Fabrication. Macromolecular Bioscience, 2013, 13, 48-58.	4.1	51
410	Recombinant reflectinâ€based optical materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 254-264.	2.1	51
411	Hierarchical biomineralization of calcium carbonate regulated by silk microspheres. Acta Biomaterialia, 2013, 9, 6974-6980.	8.3	51
412	Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering, 2015, 2, 15-34.	3. 5	51
413	A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 5361-5376.	5.8	51
414	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	3.5	51

#	Article	IF	CITATIONS
415	Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials, 2017, 145, 44-55.	11.4	51
416	Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials, 2018, 178, 122-133.	11.4	51
417	Silk fibroin and polyethylene glycolâ€based biocompatible tissue adhesives. Journal of Biomedical Materials Research - Part A, 2011, 98A, 567-575.	4.0	50
418	Stem Cell-Based Meniscus Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 2749-2761.	3.1	50
419	Permeability and Micromechanical Properties of Silk Ionomer Microcapsules. Langmuir, 2012, 28, 12235-12244.	3.5	50
420	Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Nanofibers Enhances their Differentiation toward Osteogenic Outcomes. Macromolecular Rapid Communications, 2015, 36, 1884-1890.	3.9	50
421	Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomaterialia, 2015, 20, 32-38.	8.3	50
422	Protein Bricks: 2D and 3D Bioâ€Nanostructures with Shape and Function on Demand. Advanced Materials, 2018, 30, e1705919.	21.0	50
423	3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials, 2019, 225, 119517.	11.4	50
424	Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomaterialia, 2019, 95, 3-31.	8.3	50
425	Photo-Crosslinked Silk Fibroin for 3D Printing. Polymers, 2020, 12, 2936.	4.5	50
426	Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomaterials Science, 2020, 8, 2537-2548.	5.4	50
427	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	14.9	50
428	Electroâ€Blown Spun Silk/Graphene Nanoionotronic Skin for Multifunctional Fire Protection and Alarm. Advanced Materials, 2021, 33, e2102500.	21.0	50
429	Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS Nano, 2022, 16, 2292-2305.	14.6	50
430	Fibrous proteinsâ€"silk as a model system. Polymer Degradation and Stability, 1998, 59, 25-32.	5.8	49
431	Redox-Active Ultrathin Template of Silk Fibroin: Effect of Secondary Structure on Gold Nanoparticle Reduction. Chemistry of Materials, 2009, 21, 2696-2704.	6.7	49
432	Rapid Nanoimprinting of Doped Silk Films for Enhanced Fluorescent Emission. Advanced Materials, 2010, 22, 4596-4599.	21.0	49

#	Article	IF	Citations
433	Heat Capacity of Spider Silk-Like Block Copolymers. Macromolecules, 2011, 44, 5299-5309.	4.8	49
434	Chargeâ€Tunable Autoclaved Silkâ€Tropoelastin Protein Alloys That Control Neuron Cell Responses. Advanced Functional Materials, 2013, 23, 3875-3884.	14.9	49
435	Robust Microcapsules with Controlled Permeability from Silk Fibroin Reinforced with Graphene Oxide. Small, 2014, 10, 5087-5097.	10.0	49
436	Recombinant protein blends: silk beyond natural design. Current Opinion in Biotechnology, 2016, 39, 1-7.	6.6	49
437	Computational smart polymer design based on elastin protein mutability. Biomaterials, 2017, 127, 49-60.	11.4	49
438	Physical and biological regulation of neuron regenerative growth andÂnetwork formation on recombinant dragline silks. Biomaterials, 2015, 48, 137-146.	11.4	48
439	Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. Journal of Biomedical Materials Research - Part A, 2016, 104, 3058-3072.	4.0	48
440	Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials, 2016, 110, 24-33.	11.4	48
441	Microskinâ€Inspired Injectable MSCâ€Laden Hydrogels for Scarless Wound Healing with Hair Follicles. Advanced Healthcare Materials, 2020, 9, e2000041.	7.6	48
442	Spatially Controlled Delivery of Neurotrophic Factors in Silk Fibroin–Based Nerve Conduits for Peripheral Nerve Repair. Annals of Plastic Surgery, 2011, 67, 147-155.	0.9	47
443	Rapid Transferâ€Based Micropatterning and Dry Etching of Silk Microstructures. Advanced Materials, 2011, 23, 2015-2019.	21.0	47
444	Silk Macromolecules with Amino Acid–Poly(Ethylene Glycol) Grafts for Controlling Layer-by-Layer Encapsulation and Aggregation of Recombinant Bacterial Cells. ACS Nano, 2015, 9, 1219-1235.	14.6	47
445	Precise Protein Photolithography (P ³): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist. Advanced Science, 2017, 4, 1700191.	11.2	47
446	Instructive Conductive 3D Silk Foamâ€Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 1490-1496.	4.1	46
447	Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1600762.	7.6	46
448	Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk. Acta Biomaterialia, 2018, 79, 239-252.	8.3	46
449	Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Scientific Reports, 2019, 9, 17874.	3.3	46
450	Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. International Journal of Pharmaceutics, 2015, 485, 7-14.	5.2	45

#	Article	IF	CITATIONS
451	Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomaterialia, 2015, 11, 222-232.	8.3	45
452	A silk-based encapsulation platform for pancreatic islet transplantation improves islet function <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 887-895.	2.7	45
453	Synergistic Integration of Experimental and Simulation Approaches for the <i>de Novo</i> Design of Silk-Based Materials. Accounts of Chemical Research, 2017, 50, 866-876.	15.6	45
454	Extended release formulations using silk proteins for controlled delivery of therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 741-756.	5.0	45
455	Silk–Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior. ACS Biomaterials Science and Engineering, 2019, 5, 613-622.	5.2	45
456	Silk–tropoelastin protein films for nerve guidance. Acta Biomaterialia, 2015, 14, 1-10.	8.3	44
457	The optical properties of regenerated silk fibroin films obtained from different sources. Applied Physics Letters, 2017, 111, .	3.3	44
458	The importance of the neuroâ€immunoâ€cutaneous system on human skin equivalent design. Cell Proliferation, 2019, 52, e12677.	5.3	44
459	Functionalization of Silk Fibroin with NeutrAvidin and Biotin. Macromolecular Bioscience, 2011, 11, 100-110.	4.1	43
460	Direct Transfer of Subwavelength Plasmonic Nanostructures on Bioactive Silk Films. Advanced Materials, 2012, 24, 6088-6093.	21.0	43
461	Corneal pain and experimental model development. Progress in Retinal and Eye Research, 2019, 71, 88-113.	15.5	43
462	Osteoinductive recombinant silk fusion proteins for bone regeneration. Acta Biomaterialia, 2017, 49, 127-139.	8.3	42
463	3D Printing of Silk Protein Structures by Aqueous Solventâ€Directed Molecular Assembly. Macromolecular Bioscience, 2020, 20, e1900191.	4.1	42
464	Acellular Bi-Layer Silk Fibroin Scaffolds Support Tissue Regeneration in a Rabbit Model of Onlay Urethroplasty. PLoS ONE, 2014, 9, e91592.	2.5	42
465	Protein-amylose/amylopectin molecular interactions during high-moisture extruded texturization toward plant-based meat substitutes applications. Food Hydrocolloids, 2022, 127, 107559.	10.7	42
466	Spider silk-bone sialoprotein fusion proteins for bone tissue engineering. Soft Matter, 2011, 7, 4964.	2.7	41
467	Silkâ€"Silica Composites from Genetically Engineered Chimeric Proteins: Materials Properties Correlate with Silica Condensation Rate and Colloidal Stability of the Proteins in Aqueous Solution. Langmuir, 2012, 28, 4373-4381.	3.5	41
468	Accelerated In Vitro Degradation of Optically Clear Low <i>\hat{l}^2</i> -Sheet Silk Films by Enzyme-Mediated Pretreatment. Translational Vision Science and Technology, 2013, 2, 2.	2.2	41

#	Article	IF	Citations
469	Nanoscale control of silks for nanofibrous scaffold formation with an improved porous structure. Journal of Materials Chemistry B, 2014, 2, 2622-2633.	5.8	41
470	The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein. Journal of Materials Chemistry B, 2015, 3, 2599-2606.	5.8	41
471	Bioactive silk hydrogels with tunable mechanical properties. Journal of Materials Chemistry B, 2018, 6, 2739-2746.	5.8	41
472	Thermal and Structural Properties of Silk Biomaterials Plasticized by Glycerol. Biomacromolecules, 2016, 17, 3911-3921.	5.4	40
473	Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 4278-4288.	5.2	40
474	Mass Production of Biocompatible Graphene Using Silk Nanofibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22924-22931.	8.0	40
475	Bioengineered <i>in Vitro</i> Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomaterials Science and Engineering, 2019, 5, 2417-2429.	5.2	40
476	Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods. Metabolic Engineering, 2020, 62, 126-137.	7.0	40
477	Thin Film Assembly of Spider Silk-like Block Copolymers. Langmuir, 2011, 27, 1000-1008.	3.5	39
478	Bioinspired Silicification of Silica-Binding Peptide-Silk Protein Chimeras: Comparison of Chemically and Genetically Produced Proteins. Biomacromolecules, 2012, 13, 683-690.	5.4	39
479	Silk porous scaffolds with nanofibrous microstructures and tunable properties. Colloids and Surfaces B: Biointerfaces, 2014, 120, 28-37.	5.0	39
480	3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography. ACS Biomaterials Science and Engineering, 2017, 3, 2064-2075.	5.2	39
481	Silk Hydrogels Crosslinked by the Fenton Reaction. Advanced Healthcare Materials, 2019, 8, e1900644.	7.6	39
482	Scaffolding kidney organoids on silk. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 812-822.	2.7	39
483	Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomaterials Science and Engineering, 2021, 7, 1147-1158.	5.2	39
484	Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomaterials Science, 2021, 9, 5227-5236.	5.4	39
485	Acylation of silk and wool with acid anhydrides and preparation of water-repellent fibers. Journal of Applied Polymer Science, 2001, 82, 2832-2841.	2.6	38
486	Solution behavior of synthetic silk peptides and modified recombinant silk proteins. Applied Physics A: Materials Science and Processing, 2006, 82, 193-203.	2.3	38

#	Article	IF	CITATIONS
487	Biosynthesis and Applications of Silkâ€like and Collagenâ€like Proteins. Polymer Reviews, 2007, 47, 29-62.	10.9	38
488	Materials by design: Merging proteins and music. Nano Today, 2012, 7, 488-495.	11.9	38
489	Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays. Tissue Engineering - Part C: Methods, 2018, 24, 346-359.	2.1	38
490	Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Advanced Healthcare Materials, 2021, 10, e2100427.	7.6	38
491	Noninvasive Metabolic Imaging of Engineered 3D Human Adipose Tissue in a Perfusion Bioreactor. PLoS ONE, 2013, 8, e55696.	2.5	38
492	Cyst formation following disruption of intracellular calcium signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14283-14288.	7.1	37
493	A robust spectroscopic method for the determination of protein conformational composition – Application to the annealing of silk. Acta Biomaterialia, 2018, 73, 355-364.	8.3	37
494	Multifunctional Bioreactor System for Human Intestine Tissues. ACS Biomaterials Science and Engineering, 2018, 4, 231-239.	5.2	37
495	Understanding Secondary Structures of Silk Materials via Micro- and Nano-Infrared Spectroscopies. ACS Biomaterials Science and Engineering, 2019, 5, 3161-3183.	5. 2	37
496	Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process. Biomaterials, 2020, 230, 119567.	11.4	37
497	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers., 2020, 2, 153-160.		37
498	Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 595-606.	4.0	36
499	What's Inside the Box? – Lengthâ€Scales that Govern Fracture Processes of Polymer Fibers. Advanced Materials, 2014, 26, 412-417.	21.0	36
500	Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials, 2014, 35, 8613-8620.	11.4	36
501	A Long‣iving Bioengineered Neural Tissue Platform to Study Neurodegeneration. Macromolecular Bioscience, 2020, 20, e2000004.	4.1	36
502	Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672.	11.4	36
503	Influence of Water on Protein Transitions: Morphology and Secondary Structure. Macromolecules, 2014, 47, 8107-8114.	4.8	35
504	Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances, 2014, 4, 53547-53556.	3.6	35

#	Article	IF	Citations
505	Genetically Programmable Thermoresponsive Plasmonic Gold/Silk-Elastin Protein Core/Shell Nanoparticles. Langmuir, 2014, 30, 4406-4414.	3.5	35
506	Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty. Biomaterials, 2015, 53, 149-159.	11.4	35
507	Long term perfusion system supporting adipogenesis. Methods, 2015, 84, 84-89.	3.8	35
508	Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14406-14413.	8.0	35
509	Bioactive natural protein–hydroxyapatite nanocarriers for optimizing osteogenic differentiation of mesenchymal stem cells. Journal of Materials Chemistry B, 2016, 4, 3555-3561.	5.8	35
510	Curcumin-functionalized silk biomaterials for anti-aging utility. Journal of Colloid and Interface Science, 2017, 496, 66-77.	9.4	35
511	Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. International Journal of Cancer, 2017, 140, 726-735.	5.1	35
512	Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomaterialia, 2021, 121, 214-223.	8.3	35
513	Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomaterialia, 2021, 134, 116-130.	8.3	35
514	Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein and Cell, 2020, 11, 267-285.	11.0	35
515	PEROXIDASE, HEMATIN, AND PEGYLATED-HEMATIN CATALYZED VINYL POLYMERIZATIONS IN WATER. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1219-1230.	2.2	34
516	Biosynthesis of emulsan biopolymers from agro-based feedstocks. Journal of Applied Microbiology, 2007, 102, 531-7.	3.1	34
517	Neural responses to electrical stimulation on patterned silk films. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2559-2572.	4.0	34
518	Multilayered Magnetic Gelatin Membrane Scaffolds. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23098-23109.	8.0	34
519	Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS Applied Materials & Interfaces, 2016, 8, 29310-29322.	8.0	34
520	Rationally Designed Redox-Sensitive Protein Hydrogels with Tunable Mechanical Properties. Biomacromolecules, 2016, 17, 3508-3515.	5.4	34
521	Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures. ACS Biomaterials Science and Engineering, 2018, 4, 933-941.	5.2	34
522	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing Highâ€Performance Dynamic Responsive Bioâ€Nanomaterials. Advanced Materials, 2018, 30, e1802306.	21.0	34

#	Article	lF	Citations
523	AFM Study of Morphology and Mechanical Properties of a Chimeric Spider Silk and Bone Sialoprotein Protein for Bone Regeneration. Biomacromolecules, 2011, 12, 1675-1685.	5.4	33
524	Towards a biomorphic soft robot: Design constraints and solutions. , 2012, , .		33
525	Quantitative characterization of mineralized silk film remodeling during long-term osteoblast–osteoclast co-culture. Biomaterials, 2014, 35, 3794-3802.	11.4	33
526	<i>In vitro</i> chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E276-E288.	2.7	33
527	Ionically Crosslinked Thermoresponsive Chitosan Hydrogels formed In Situ: A Conceptual Basis for Deeper Understanding. Macromolecular Materials and Engineering, 2017, 302, 1700227.	3.6	33
528	Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Reports, 2018, 25, 1593-1609.e7.	6.4	33
529	Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. Materials Science and Engineering C, 2019, 94, 976-987.	7.3	33
530	Exploration of Biomass-Derived Activated Carbons for Use in Vanadium Redox Flow Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9472-9482.	6.7	33
531	Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. Methods in Molecular Biology, 2011, 702, 319-330.	0.9	33
532	Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair. ACS Applied Materials & Differentiation for Scarless Spinal Cord Repair (New York) Academy Spinal Cord Repair (New York) Acade	8.0	33
533	Incorporation of quantum dots into silk biomaterials for fluorescence imaging. Journal of Materials Chemistry B, 2015, 3, 6509-6519.	5 . 8	32
534	Multichannel silk protein/laminin grafts for spinal cord injury repair. Journal of Biomedical Materials Research - Part A, 2016, 104, 3045-3057.	4.0	32
535	Evaluation of the Spectral Response of Functionalized Silk Inverse Opals as Colorimetric Immunosensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16218-16226.	8.0	32
536	Lithium-free processing of silk fibroin. Journal of Biomaterials Applications, 2016, 31, 450-463.	2.4	32
537	Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. Scientific Reports, 2017, 7, 1041.	3.3	32
538	Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design. ACS Biomaterials Science and Engineering, 2017, 3, 1542-1556.	5.2	32
539	Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 285-295.	2.7	32
540	A Biodegradable Stent with Surface Functionalization of Combinedâ€Therapy Drugs for Colorectal Cancer. Advanced Healthcare Materials, 2018, 7, e1801213.	7.6	32

#	Article	IF	Citations
541	3D Printing of Functional Microalgal Silk Structures for Environmental Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4808-4816.	5.2	32
542	Membrane Potential Depolarization Alters Calcium Flux and Phosphate Signaling During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectricity, 2019, 1, 56-66.	1.1	32
543	Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomaterials Science, 2020, 8, 4176-4185.	5.4	32
544	Potential Involvement of Varicella Zoster Virus in Alzheimer's Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. Journal of Alzheimer's Disease, 2022, 88, 1189-1200.	2.6	32
545	Edible films for cultivated meat production. Biomaterials, 2022, 287, 121659.	11.4	32
546	Fabrication of Tunable, Highâ€Refractiveâ€Index Titanate–Silk Nanocomposites on the Micro―and Nanoscale. Advanced Materials, 2015, 27, 6728-6732.	21.0	31
547	Injectable silk-based biomaterials for cervical tissue augmentation: an inÂvitro study. American Journal of Obstetrics and Gynecology, 2016, 214, 118.e1-118.e9.	1.3	31
548	Fabrication of Silk Scaffolds with Nanomicroscaled Structures and Tunable Stiffness. Biomacromolecules, 2017, 18, 2073-2079.	5.4	31
549	Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures. Advanced Functional Materials, 2018, 28, 1800228.	14.9	31
550	Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Frontiers in Chemistry, 2020, 8, 604398.	3.6	31
551	Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomaterials Science and Engineering, 2020, 6, 2357-2367.	5.2	31
552	Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk–Silica Chimeras. Advanced Functional Materials, 2018, 28, 1702570.	14.9	31
553	Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy. Physical Biology, 2013, 10, 056002.	1.8	30
554	Biomineralization regulation by nanoâ€sized features in silk fibroin proteins: Synthesis of waterâ€dispersible nanoâ€hydroxyapatite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1720-1729.	3.4	30
555	Stabilization of Natural Antioxidants by Silk Biomaterials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13573-13582.	8.0	30
556	Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor. Journal of Biological Chemistry, 2016, 291, 4343-4355.	3.4	30
557	Niclosamide rescues microcephaly in a humanized <i>in vivo</i> model of Zika infection using human induced neural stem cells. Biology Open, 2018, 7, .	1.2	30
558	Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromolecular Bioscience, 2012, 12, 1671-1679.	4.1	29

#	Article	IF	Citations
559	Bioengineered Silk Proteins to Control Cell and Tissue Functions. Methods in Molecular Biology, 2013, 996, 19-41.	0.9	29
560	The behavior of neuronal cells on tendon-derived collagen sheets as potential substrates for nerve regeneration. Biomaterials, 2014, 35, 3551-3557.	11.4	29
561	Electrodeposited silk coatings for bone implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1602-1609.	3.4	29
562	Engineering Biomaterial–Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Bioconjugate Chemistry, 2015, 26, 1212-1223.	3.6	29
563	Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides. Acta Biomaterialia, 2015, 15, 173-180.	8.3	29
564	Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 733-742.	2.7	29
565	Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 2021, 121, 180-192.	8.3	29
566	On the Quantification of Model Uncertainty: A Bayesian Perspective. Psychometrika, 2021, 86, 215-238.	2.1	29
567	Silk for Drug Delivery Applications: Opportunities and Challenges. Israel Journal of Chemistry, 2013, 53, 756-766.	2.3	28
568	DNA preservation in silk. Biomaterials Science, 2017, 5, 1279-1292.	5. 4	28
569	Modular flow chamber for engineering bone marrow architecture and function. Biomaterials, 2017, 146, 60-71.	11.4	28
570	Sonication Exfoliation of Defect-Free Graphene in Aqueous Silk Nanofiber Solutions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12261-12267.	6.7	28
571	In Vitro Insect Muscle for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2019, 5, 1071-1082.	5.2	28
572	Facile production of natural silk nanofibers for electronic device applications. Composites Science and Technology, 2020, 187, 107950.	7.8	28
573	Functional Characterization of Three-Dimensional Cortical Cultures for InÂVitro Modeling of Brain Networks. IScience, 2020, 23, 101434.	4.1	28
574	Generation of Nano-pores in Silk Fibroin Films Using Silk Nanoparticles for Full-Thickness Wound Healing. Biomacromolecules, 2021, 22, 546-556.	5.4	28
575	Challenges in delivering therapeutic peptides and proteins: A silk-based solution. Journal of Controlled Release, 2022, 345, 176-189.	9.9	28
576	Effect of sequence features on assembly of spider silk block copolymers. Journal of Structural Biology, 2014, 186, 412-419.	2.8	27

#	Article	IF	Citations
577	Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Advances, 2014, 4, 39962-39968.	3.6	27
578	Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1327-1342.	3.5	27
579	Comparison of the depolarization response of human mesenchymal stem cells from different donors. Scientific Reports, 2016, 5, 18279.	3.3	27
580	Localized Immunomodulatory Silk Macrocapsules for Islet-like Spheroid Formation and Sustained Insulin Production. ACS Biomaterials Science and Engineering, 2017, 3, 2443-2456.	5.2	27
581	Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomaterialia, 2017, 47, 50-59.	8.3	27
582	Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization. Annals of Biomedical Engineering, 2020, 48, 1905-1915.	2.5	27
583	Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult <i>Xenopus laevis</i> . Science Advances, 2022, 8, eabj2164.	10.3	27
584	Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomaterialia, 2022, 144, 81-95.	8.3	27
585	Isolation and Maintenance-Free Culture of Contractile Myotubes from Manduca sexta Embryos. PLoS ONE, 2012, 7, e31598.	2.5	26
586	In Vivo Biological Responses to Silk Proteins Functionalized with Bone Sialoprotein. Macromolecular Bioscience, 2013, 13, 444-454.	4.1	26
587	Characteristics of platelet gels combined with silk. Biomaterials, 2014, 35, 3678-3687.	11.4	26
588	Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 3339-3348.	4.0	26
589	Methods and Applications of Multilayer Silk Fibroin Laminates Based on Spatially Controlled Welding in Protein Films. Advanced Functional Materials, 2016, 26, 44-50.	14.9	26
590	Heparin-Modified Polyethylene Glycol Microparticle Aggregates for Focal Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2016, 2, 2287-2293.	5.2	26
591	Fabrication and Characterization of Recombinant Silkâ€Elastinâ€Likeâ€Protein (SELP) Fiber. Macromolecular Bioscience, 2018, 18, e1800265.	4.1	26
592	Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding. Journal of Structural Biology, 2018, 203, 255-262.	2.8	26
593	Hydrogelâ~Solid Hybrid Materials for Biomedical Applications Enabled by Surfaceâ€Embedded Radicals. Advanced Functional Materials, 2020, 30, 2004599.	14.9	26
594	Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3186-3198.	8.0	26

#	Article	IF	CITATION
595	BioDome regenerative sleeve for biochemical and biophysical stimulation of tissue regeneration. Medical Engineering and Physics, 2010, 32, 1065-1073.	1.7	25
596	Effect of \hat{l}^2 -sheet crystalline content on mass transfer in silk films. Journal of Membrane Science, 2011, 383, 44-49.	8.2	25
597	Optimizing Molecular Weight of Lyophilized Silk As a Shelf-Stable Source Material. ACS Biomaterials Science and Engineering, 2016, 2, 595-605.	5. 2	25
598	A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe, 2018, 50, 85-92.	2.1	25
599	Subtle Regulation of Scaffold Stiffness for the Optimized Control of Cell Behavior. ACS Applied Bio Materials, 2019, 2, 3108-3119.	4.6	25
600	Sustained release silk fibroin discs: Antibody and protein delivery for HIV prevention. Journal of Controlled Release, 2019, 301, 1-12.	9.9	25
601	Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Applied Physics Letters, 2010, 97, 123702.	3.3	24
602	Dielectric Breakdown Strength of Regenerated Silk Fibroin Films as a Function of Protein Conformation. Biomacromolecules, 2013, 14, 3509-3514.	5 . 4	24
603	Selfâ€(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material. Angewandte Chemie - International Edition, 2015, 54, 8490-8493.	13.8	24
604	Encapsulation of volatile compounds in silk microparticles. Journal of Coatings Technology Research, 2015, 12, 793-799.	2.5	24
605	Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics. Soft Matter, 2015, 11, 756-761.	2.7	24
606	Self-Assembling Silk-Based Nanofibers with Hierarchical Structures. ACS Biomaterials Science and Engineering, 2017, 3, 2617-2627.	5.2	24
607	Delivery of chemotherapeutics using spheres made of bioengineered spider silks derived from MaSp1 and MaSp2 proteins. Nanomedicine, 2018, 13, 439-454.	3.3	24
608	Silkâ€Based Antimicrobial Polymers as a New Platform to Design Drugâ€Free Materials to Impede Microbial Infections. Macromolecular Bioscience, 2018, 18, e1800262.	4.1	24
609	Interleukin-1 Receptor 1 Deletion in Focal and Diffuse Experimental Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2019, 36, 370-379.	3.4	24
610	Ductility and Porosity of Silk Fibroin Films by Blending with Glycerol/Polyethylene Glycol and Adjusting the Drying Temperature. ACS Biomaterials Science and Engineering, 2020, 6, 1176-1185.	5.2	24
611	Bi‣ayered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue. Advanced Functional Materials, 2020, 30, 2000543.	14.9	24
612	Smart Material Hydrogel Transfer Devices Fabricated with Stimuliâ€Responsive Silkâ€Elastinâ€Like Proteins. Advanced Healthcare Materials, 2020, 9, e2000266.	7.6	24

#	Article	IF	Citations
613	Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials, 2022, 286, 121611.	11.4	24
614	Silk ionomers for encapsulation and differentiation of human MSCs. Biomaterials, 2012, 33, 7375-7385.	11.4	23
615	Effects of Shiga Toxin Type 2 on a Bioengineered Three-Dimensional Model of Human Renal Tissue. Infection and Immunity, 2015, 83, 28-38.	2.2	23
616	Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers. Materials, 2016, 9, 221.	2.9	23
617	Serially Transplanted Nonpericytic CD146â° Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo. Stem Cells, 2016, 34, 1097-1111.	3.2	23
618	Optimization of silk films as substrate for functional corneal epithelium growth. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 431-441.	3.4	23
619	Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnology and Bioengineering, 2016, 113, 913-929.	3.3	23
620	Simulation of ECM with silk and chitosan nanocomposite materials. Journal of Materials Chemistry B, 2017, 5, 4789-4796.	5.8	23
621	Immobilization of Recombinant <i>E. coli</i> Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science and Engineering, 2017, 3, 2278-2292.	5.2	23
622	Development of a Three-Dimensional Adipose Tissue Model for Studying Embryonic Exposures to Obesogenic Chemicals. Annals of Biomedical Engineering, 2017, 45, 1807-1818.	2.5	23
623	Control of octreotide release from silk fibroin microspheres. Materials Science and Engineering C, 2019, 102, 820-828.	7.3	23
624	Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenic differentiation. Biomaterials Science, 2020, 8, 657-672.	5.4	23
625	Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells. Biomacromolecules, 2020, 21, 2829-2843.	5.4	23
626	mRNA Delivery Using Bioreducible Lipidoid Nanoparticles Facilitates Neural Differentiation of Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2021, 10, e2000938.	7.6	23
627	Engineered Tough Silk Hydrogels through Assembling \hat{l}^2 -Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS Nano, 2022, 16, 10209-10218.	14.6	23
628	Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Engineering - Part A, 2015, 21, 2156-2165.	3.1	22
629	Silk electrogel coatings for titanium dental implants. Journal of Biomaterials Applications, 2015, 29, 1247-1255.	2.4	22
630	Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Advances, 2016, 6, 21776-21788.	3.6	22

#	Article	IF	Citations
631	<i>In situ</i> ultrasound imaging of silk hydrogel degradation and neovascularization. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 822-830.	2.7	22
632	SERS Substrate with Silk Nanoribbons as Interlayer Template. ACS Applied Materials & District Series, 2019, 11, 42896-42903.	8.0	22
633	Two- and Three-Dimensional Bioengineered Human Intestinal Tissue Models for Cryptosporidium. Methods in Molecular Biology, 2020, 2052, 373-402.	0.9	22
634	Flexible Water-Absorbing Silk-Fibroin Biomaterial Sponges with Unique Pore Structure for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1641-1649.	5.2	22
635	Engineered 3D Silk-collagen-based Model of Polarized Neural Tissue. Journal of Visualized Experiments, 2015, , e52970.	0.3	22
636	End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins. ACS Biomaterials Science and Engineering, 2022, 8, 1156-1165.	5.2	22
637	Stabilization of horseradish peroxidase in silk materials. Frontiers of Materials Science in China, 2009, 3, 367-373.	0.5	21
638	Photoresponsive Retinal-Modified Silk–Elastin Copolymer. Journal of the American Chemical Society, 2013, 135, 3675-3679.	13.7	21
639	Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17694-17706.	8.0	21
640	Conformation Transitions of Recombinant Spidroins via Integration of Time-Resolved FTIR Spectroscopy and Molecular Dynamic Simulation. ACS Biomaterials Science and Engineering, 2016, 2, 1298-1308.	5.2	21
641	A Silk Fibroin and Peptide Amphiphileâ€Based Coâ€Culture Model for Osteochondral Tissue Engineering. Macromolecular Bioscience, 2016, 16, 1212-1226.	4.1	21
642	Phenol red-silk tyrosine cross-linked hydrogels. Acta Biomaterialia, 2016, 42, 102-113.	8.3	21
643	Biodegradable porous silk microtubes for tissue vascularization. Journal of Materials Chemistry B, 2017, 5, 1227-1235.	5.8	21
644	Predicting rates of <i>in vivo</i> degradation of recombinant spider silk proteins. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e97-e105.	2.7	21
645	In vitro and in vivo evaluation of etoposide - silk wafers for neuroblastoma treatment. Journal of Controlled Release, 2018, 285, 162-171.	9.9	21
646	Unraveling the molecular mechanisms of thermo-responsive properties of silk-elastin-like proteins by integrating multiscale modeling and experiment. Journal of Materials Chemistry B, 2018, 6, 3727-3734.	5.8	21
647	Human Corneal Tissue Model for Nociceptive Assessments. Advanced Healthcare Materials, 2018, 7, e1800488.	7.6	21
648	Variations of Elastic Modulus and Cell Volume with Temperature for Cortical Neurons. Langmuir, 2019, 35, 10965-10976.	3.5	21

#	Article	IF	Citations
649	Modeling Controlled Cortical Impact Injury in 3D Brainâ€Like Tissue Cultures. Advanced Healthcare Materials, 2020, 9, e2000122.	7.6	21
650	Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials, 2021, 269, 120643.	11.4	21
651	Conformation-driven strategy for resilient and functional protein materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
652	Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11177-11191.	8.0	21
653	Enzyme-Based Vinyl Polymerization. Journal of Polymers and the Environment, 2002, 10, 85-91.	5.0	20
654	Optically induced birefringence and holography in silk. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 257-262.	2.1	20
655	Down-regulation of Nogo-A by collagen scaffolds impregnated with bone marrow stromal cell treatment after traumatic brain injury promotes axonal regeneration in rats. Brain Research, 2014, 1542, 41-48.	2.2	20
656	Influence of Water on Protein Transitions: Thermal Analysis. Macromolecules, 2014, 47, 8098-8106.	4.8	20
657	Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. , 2016, 57, 6134.		20
658	Fabrication of Protein Films from Genetically Engineered Silk-Elastin-Like Proteins by Controlled Cross-Linking. ACS Biomaterials Science and Engineering, 2017, 3, 335-341.	5.2	20
659	Modeling and Experiment Reveal Structure and Nanomechanics across the Inverse Temperature Transition in B. mori Silk-Elastin-like Protein Polymers. ACS Biomaterials Science and Engineering, 2017, 3, 2889-2899.	5.2	20
660	Silk Nanofibers as Robust and Versatile Emulsifiers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35693-35700.	8.0	20
661	Variability in responses observed in human white adipose tissue models. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 840-847.	2.7	20
662	Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Engineering - Part A, 2019, 25, 12-23.	3.1	20
663	Sequence-specific liquid crystallinity of collagen model peptides. I. Transmission electron microscopy studies of interfacial collagen gels. Biopolymers, 2000, 53, 350-362.	2.4	19
664	Biological molecules at large. Nature, 2002, 420, 20-21.	27.8	19
665	Biological responses to spider silk-antibiotic fusion protein. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 356-368.	2.7	19
666	Synthesis and characterization of biocompatible nanodiamond-silk hybrid material. Biomedical Optics Express, 2014, 5, 596.	2.9	19

#	Article	IF	Citations
667	Biocompatibility of a Sonicated Silk Gel for Cervical Injection During Pregnancy: In Vivo and In Vitro Study. Reproductive Sciences, 2014, 21, 1266-1273.	2.5	19
668	Silk Fibroinâ€Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells. Advanced Electronic Materials, 2016, 2, 1600190.	5.1	19
669	Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration. Scientific Reports, 2017, 7, 2175.	3.3	19
670	Stabilization and Sustained Release of HIV Inhibitors by Encapsulation in Silk Fibroin Disks. ACS Biomaterials Science and Engineering, 2017, 3, 1654-1665.	5.2	19
671	Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules, 2018, 19, 3705-3713.	5. 4	19
672	Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1959-1971.	2.7	19
673	Repetitive head injury in adolescent mice: A role for vascular inflammation. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2196-2209.	4.3	19
674	Possibilities for Engineered Insect Tissue as a Food Source. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	19
675	Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites. Acta Biomaterialia, 2021, 120, 203-212.	8.3	19
676	In Vitro Models of Intestine Innate Immunity. Trends in Biotechnology, 2021, 39, 274-285.	9.3	19
677	Translational approaches to functional platelet production ex vivo. Thrombosis and Haemostasis, 2016, 115, 250-256.	3.4	18
678	Silk Reservoirs for Local Delivery of Cisplatin for Neuroblastoma Treatment: InÂVitro and InÂVivo Evaluations. Journal of Pharmaceutical Sciences, 2019, 108, 2748-2755.	3.3	18
679	Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bulletin, 2019, 44, 53-58.	3.5	18
680	Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. Biomaterials, 2020, 240, 119857.	11.4	18
681	Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomaterials Science and Engineering, 2020, 6, 2847-2854.	5.2	18
682	Spiderless spider webs. Nature Biotechnology, 2002, 20, 239-240.	17.5	17
683	Bioengineered Silk Gene Delivery System for Nuclear Targeting. Macromolecular Bioscience, 2014, 14, 1291-1298.	4.1	17
684	In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering. Journal of Tissue Engineering, 2014, 5, 204173141455684.	5.5	17

#	Article	IF	Citations
685	Degradation of Silk Films in Multipocket Corneal Stromal Rabbit Models. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e266-e276.	1.6	17
686	Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and <i>in vitro</i> osteogenic properties towards load-bearing applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1741-1753.	2.7	17
687	Structure–Chemical Modification Relationships with Silk Materials. ACS Biomaterials Science and Engineering, 2019, 5, 2762-2768.	5.2	17
688	Human Adipose Derived Cells in Two- and Three-Dimensional Cultures: Functional Validation of an In Vitro Fat Construct. Stem Cells International, 2020, 2020, 1-14.	2.5	17
689	Ethanol-induced coacervation in aqueous gelatin solution for constructing nanospheres and networks: Morphology, dynamics and thermal sensitivity. Journal of Colloid and Interface Science, 2021, 582, 610-618.	9.4	17
690	Silk Hydrogels with Controllable Formation of Dityrosine, 3,4-Dihydroxyphenylalanine, and 3,4-Dihydroxyphenylalanine–Fe ³⁺ Complexes through Chitosan Particle-Assisted Fenton Reactions. Biomacromolecules, 2021, 22, 773-787.	5.4	17
691	Perspectives on scaling production of adipose tissue for food applications. Biomaterials, 2022, 280, 121273.	11.4	17
692	Vitamin C Functionalized Poly(Methyl Methacrylate) for Free Radical Scavenging. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1377-1386.	2.2	16
693	Rapid prototyped sutureless anastomosis device from selfâ€euring silk bioâ€ink. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1333-1343.	3.4	16
694	Silk fibroin hydroxyapatite composite thermal stabilisation of carbonic anhydrase. Journal of Materials Chemistry A, 2015, 3, 19282-19287.	10.3	16
695	Absorbable Biologically Based Internal Fixation. Clinics in Podiatric Medicine and Surgery, 2015, 32, 61-72.	0.6	16
696	Tissue-engineered 3D cancer-in-bone modeling: silk and PUR protocols. BoneKEy Reports, 2016, 5, 842.	2.7	16
697	Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements. Journal of Biomedical Materials Research - Part A, 2017, 105, 687-696.	4.0	16
698	Silk Molecular Weight Influences the Kinetics of Enzymatically Cross-linked Silk Hydrogel Formation. Langmuir, 2018, 34, 15383-15387.	3.5	16
699	Human Skin Equivalents Demonstrate Need for Neuroâ€Immunoâ€Cutaneous System. Advanced Biology, 2019, 3, 1800283.	3.0	16
700	Cell-specific activation of RIPK1 and MLKL after intracerebral hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1623-1633.	4.3	16
701	Natural Nanofiber Shuttles for Transporting Hydrophobic Cargo into Aqueous Solutions. Biomacromolecules, 2020, 21, 1022-1030.	5.4	16
702	Tunable Biodegradable Silk-Based Memory Foams with Controlled Release of Antibiotics. ACS Applied Bio Materials, 2020, 3, 2466-2472.	4.6	16

#	Article	IF	Citations
703	Injectable silk nanofiber hydrogels as stem cell carriers to accelerate wound healing. Journal of Materials Chemistry B, 2021, 9, 7771-7781.	5.8	16
704	Mechanical Trainingâ€Driven Structural Remodeling: A Rational Route for Outstanding Highly Hydrated Silk Materials. Small, 2021, 17, e2102660.	10.0	16
705	Surface properties of emulsan-analogs. Journal of Chemical Technology and Biotechnology, 1999, 74, 759-765.	3.2	15
706	Thermal analysis of protein–metallic ion systems. Journal of Thermal Analysis and Calorimetry, 2009, 96, 827-834.	3.6	15
707	Silk Film Culture System for in vitro Analysis and Biomaterial Design. Journal of Visualized Experiments, 2012, , .	0.3	15
708	Silk Layering As Studied with Neutron Reflectivity. Langmuir, 2012, 28, 11481-11489.	3.5	15
709	Encapsulation of oil in silk fibroin biomaterials. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
710	Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain and Behavior, 2015, 5, 24-38.	2.2	15
711	Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomaterials Science and Engineering, 2015, 1, 287-294.	5.2	15
712	Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly. International Journal of Molecular Sciences, 2016, 17, 1573.	4.1	15
713	In vitro 3D regeneration-like growth of human patient brain tissue. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1247-1260.	2.7	15
714	Mechanical and Biochemical Effects of Progesterone on Engineered Cervical Tissue. Tissue Engineering - Part A, 2018, 24, 1765-1774.	3.1	15
715	Film interface for drug testing for delivery to cells in culture and in the brain. Acta Biomaterialia, 2019, 94, 306-319.	8.3	15
716	Engineering advanced neural tissue constructs to mitigate acute cerebral inflammation after brain transplantation in rats. Biomaterials, 2019, 192, 510-522.	11.4	15
717	Selfâ€Folding 3D Silk Biomaterial Rolls to Facilitate Axon and Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e2000530.	7.6	15
718	ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104921.	3.1	15
719	Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk–Gelatin Composite Hydrogel Microbeads. Advanced Healthcare Materials, 2022, 11, .	7.6	15
720	Neuronal growth as diffusion in an effective potential. Physical Review E, 2013, 88, 042707.	2.1	14

#	Article	IF	Citations
721	Characterization of Small Molecule Controlled Release From Silk Films. Macromolecular Chemistry and Physics, 2013, 214, 280-294.	2.2	14
722	Multifunctional SilkTropoelastin Biomaterial Systems. Israel Journal of Chemistry, 2013, 53, 777-786.	2.3	14
723	Neural circuits with long-distance axon tracts for determining functional connectivity. Journal of Neuroscience Methods, 2014, 222, 82-90.	2.5	14
724	Hierarchical charge distribution controls self-assembly process of silk in vitro. Frontiers of Materials Science, 2015, 9, 382-391.	2.2	14
725	Tutorials for Electrophysiological Recordings in Neuronal Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 2235-2246.	5.2	14
726	Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces. Biomacromolecules, 2017, 18, 2876-2886.	5.4	14
727	Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials. ACS Biomaterials Science and Engineering, 2017, 3, 2877-2888.	5.2	14
728	Organotypic culture to assess cell adhesion, growth and alignment of different organs on silk fibroin. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 354-361.	2.7	14
729	Silk Fibroinâ€Based Fibrous Anal Fistula Plug with Drug Delivery Function. Macromolecular Bioscience, 2018, 18, e1700384.	4.1	14
730	Stabilization of RNA Encapsulated in Silk. ACS Biomaterials Science and Engineering, 2018, 4, 1708-1715.	5.2	14
731	Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage. Journal of Structural Biology, 2018, 203, 247-254.	2.8	14
732	Self-assembling oxidized silk fibroin nanofibrils with controllable fractal dimensions. Journal of Materials Chemistry B, 2018, 6, 4656-4664.	5.8	14
733	Pharmaceutical Approaches to HIV Treatment and Prevention. Advanced Therapeutics, 2018, 1, 1800054.	3.2	14
734	Disseminated injection of vincristine-loaded silk gel improves the suppression of neuroblastoma tumor growth. Surgery, 2018, 164, 909-915.	1.9	14
735	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	5.2	14
736	Tuning Microcapsule Shell Thickness and Structure with Silk Fibroin and Nanoparticles for Sustained Release. ACS Biomaterials Science and Engineering, 2020, 6, 4583-4594.	5.2	14
737	Assessing the compatibility of primary human hepatocyte culture within porous silk sponges. RSC Advances, 2020, 10, 37662-37674.	3.6	14
738	Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs. Materials, 2010, 3, 1833-1844.	2.9	13

#	Article	IF	Citations
739	Adhesion Prevention after Laminectomy Using Silkâ€Polyethylene Glycol Hydrogels. Advanced Healthcare Materials, 2015, 4, 2120-2127.	7.6	13
740	Evaluation of Silk Inverse Opals for "Smart―Tissue Culture. ACS Omega, 2017, 2, 470-477.	3.5	13
741	Fabrication of elastomeric silk fibers. Biopolymers, 2017, 107, e23030.	2.4	13
742	Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. Scientific Reports, 2018, 8, 17294.	3.3	13
743	Enzymatic Phosphorylation of Ser in a Type I Collagen Peptide. Biophysical Journal, 2018, 115, 2327-2335.	0.5	13
744	Bioengineered in vitro enteric nervous system. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1712-1723.	2.7	13
745	Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Advanced Healthcare Materials, 2019, 8, 1901106.	7.6	13
746	Design of Silk-Elastin-Like Protein Nanoparticle Systems with Mucoadhesive Properties. Journal of Functional Biomaterials, 2019, 10, 49.	4.4	13
747	Injectable Silk-Based Hydrogel as an Alternative to Cervical Cerclage: A Rabbit Study. Tissue Engineering - Part A, 2020, 26, 379-386.	3.1	13
748	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	8.0	13
749	Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death and Disease, 2021, 12, 1064.	6.3	13
750	Biodegradation of Polyaromatics Synthesized by Peroxidase-Catalyzed Free-Radical Polymerization. Journal of Polymers and the Environment, 1998, 6, 115-120.	5.0	12
751	Structural Mimetic Silk Fiber-Reinforced Composite Scaffolds Using Multi-Angle Fibers. Macromolecular Bioscience, 2015, 15, 1125-1133.	4.1	12
752	Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth. Journal of Pediatric Surgery, 2016, 51, 2058-2062.	1.6	12
753	Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. Journal of Pediatric Surgery, 2017, 52, 2061-2065.	1.6	12
754	Injectable Silk–Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity. ACS Biomaterials Science and Engineering, 2019, 5, 6602-6609.	5.2	12
755	Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential. Biology Open, 2020, 9, .	1.2	12
756	Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk. Biomacromolecules, 2021, 22, 788-799.	5.4	12

#	Article	IF	Citations
757	On-Demand Regulation of Dual Thermosensitive Protein Hydrogels. ACS Macro Letters, 2021, 10, 395-400.	4.8	12
758	Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps. Biomaterials Science, 2021, 9, 3162-3170.	5.4	12
759	A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis. PLoS ONE, 2016, 11, e0155618.	2.5	12
760	Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cellular and Molecular Life Sciences, 2022, 79, 78.	5.4	12
761	A multi-shank silk-backed parylene neural probe for reliable chronic recording. , 2013, , .		11
762	Quantitative analysis of castration resistant prostate cancer progression through phosphoproteome signaling. BMC Cancer, 2014, 14, 325.	2.6	11
763	Equine model for softâ€tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1217-1227.	3.4	11
764	Design of silk–vaterite microsphere systems as drug carriers with pH-responsive release behavior. Journal of Materials Chemistry B, 2015, 3, 8314-8320.	5.8	11
765	Enhanced Stabilization in Dried Silk Fibroin Matrices. Biomacromolecules, 2017, 18, 2900-2905.	5.4	11
766	Tissue Models for Neurogenesis and Repair in 3D. Advanced Functional Materials, 2018, 28, 1803822.	14.9	11
767	Ivermectin Promotes Peripheral Nerve Regeneration during Wound Healing. ACS Omega, 2018, 3, 12392-12402.	3.5	11
768	Bioinspired Energy Storage and Harvesting Devices. Advanced Materials Technologies, 2021, 6, 2001301.	5.8	11
769	Toughening Wetâ€Spun Silk Fibers by Silk Nanofiber Templating. Macromolecular Rapid Communications, 2022, 43, e2100891.	3.9	11
770	Degradable Silkâ€Based Subcutaneous Oxygen Sensors. Advanced Functional Materials, 2022, 32, .	14.9	11
771	Title is missing!. Biotechnology Letters, 1997, 19, 1217-1221.	2.2	10
772	Multifunctional spider silk polymers for gene delivery to human mesenchymal stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1390-1401.	3.4	10
773	Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds. Journal of Orthopaedic Research, 2016, 34, 581-590.	2.3	10
774	Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Proteinâ∈Based Block Copolymers. Macromolecular Bioscience, 2017, 17, 1700095.	4.1	10

#	Article	IF	Citations
775	Biâ€layer silk fibroin grafts support functional tissue regeneration in a porcine model of onlay esophagoplasty. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e894-e904.	2.7	10
776	Silk Hydrogel Microfibers for Biomimetic Fibrous Material Design. Macromolecular Materials and Engineering, 2019, 304, 1900045.	3.6	10
777	Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach. Materials, 2020, 13, 3596.	2.9	10
778	Aligned Silk Sponge Fabrication and Perfusion Culture for Scalable Proximal Tubule Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10768-10777.	8.0	10
779	Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietin-receptor agonists in patients. ELife, 2021, 10, .	6.0	10
780	Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome. Advanced Healthcare Materials, 2022, 11 , .	7.6	10
781	Thermal analysis of spider silk inspired di-block copolymers in the glass transition region by TMDSC. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1193-1201.	3.6	9
782	The Pharmacokinetics and Pharmacodynamics of Kollidon VA64 Dissociate its Protective Effects from Membrane Resealing after Controlled Cortical Impact in Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1347-1353.	4.3	9
783	Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images. Biomedical Optics Express, 2015, 6, 4395.	2.9	9
784	Binding Quantum Dots to Silk Biomaterials for Optical Sensing. Journal of Sensors, 2015, 2015, 1-10.	1.1	9
785	Direct Transfer Printing of Water Hydrolyzable Metals onto Silk Fibroin Substrates through Thermalâ€Reflowâ€Based Adhesion. Advanced Materials Interfaces, 2016, 3, 1600094.	3.7	9
786	Electrochemically Directed Assembly of Designer Coiled-Coil Telechelic Proteins. ACS Biomaterials Science and Engineering, 2017, 3, 3195-3206.	5.2	9
787	Three-Dimensional Tissue Models for Studying Ex Vivo Megakaryocytopoiesis and Platelet Production. Methods in Molecular Biology, 2018, 1812, 177-193.	0.9	9
788	Growth factor-free salt-leached silk scaffolds for differentiating endothelial cells. Journal of Materials Chemistry B, 2018, 6, 4308-4313.	5.8	9
789	Assembly and Application of a Threeâ€Dimensional Human Corneal Tissue Model. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 81, e84.	1.1	9
790	Ex vivo pregnantâ€like tissue model to assess injectable hydrogel for preterm birth prevention. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 468-474.	3.4	9
791	Sustained Photosynthesis and Oxygen Generation of Microalgae-Embedded Silk Fibroin Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 2734-2744.	5.2	9
792	IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines. Oncotarget, 2017, 8, 42382-42397.	1.8	9

#	Article	IF	CITATIONS
793	Repetitive Mild Closed Head Injury in Adolescent Mice Is Associated with Impaired Proteostasis, Neuroinflammation, and Tauopathy. Journal of Neuroscience, 2022, 42, 2418-2432.	3.6	9
794	Compositional consistency of a heteropolysaccharide-7 produced by Beijerinckia indica. Biotechnology Letters, 1997, 19, 803-807.	2.2	8
795	Young's Modulus of Cortical and P19 Derived Neurons Measured by Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2012, 1420, 7.	0.1	8
796	Assessment of Multipotent Mesenchymal Stromal Cells in Bone Marrow Aspirate From Human Calcaneus. Journal of Foot and Ankle Surgery, 2017, 56, 42-46.	1.0	8
797	Quantifying the efficiency of Hydroxyapatite Mineralising Peptides. Scientific Reports, 2017, 7, 7681.	3.3	8
798	Tunable Interfacial Properties in Silk Ionomer Microcapsules with Tailored Multilayer Interactions. Macromolecular Bioscience, 2019, 19, e1800176.	4.1	8
799	Hyperosmolar Potassium Inhibits Myofibroblast Conversion and Reduces Scar Tissue Formation. ACS Biomaterials Science and Engineering, 2019, 5, 5327-5336.	5.2	8
800	Matrigel-Free Laminin–Entactin Matrix to Induce Human Renal Proximal Tubule Structure Formation In Vitro. ACS Biomaterials Science and Engineering, 2020, 6, 6618-6625.	5.2	8
801	Silk Reservoir Implants for Sustained Drug Delivery. ACS Applied Bio Materials, 2021, 4, 869-880.	4.6	8
802	Sugar Functionalization of Silks with Pathwayâ€Controlled Substitution and Properties. Advanced Biology, 2021, 5, 2100388.	2.5	8
803	Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly. ACS Biomaterials Science and Engineering, 2021, 7, 2337-2345.	5.2	8
804	Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS Nano, 2021, 15, 14162-14173.	14.6	8
805	Silk Nanocarrier Size Optimization for Enhanced Tumor Cell Penetration and Cytotoxicity In Vitro. ACS Biomaterials Science and Engineering, 2022, 8, 140-150.	5.2	8
806	Horseradish Peroxidase Catalyzed Polymerization of Tyrosine Derivatives for Nanoscale Surface Patterning. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1437-1445.	2.2	7
807	Lubrication Properties of Phospholipid Liposome Coated Silk Microspheres. Particle and Particle Systems Characterization, 2013, 30, 133-137.	2.3	7
808	Towards the fabrication of biohybrid silk fibroin materials: entrapment and preservation of chloroplast organelles in silk fibroin films. RSC Advances, 2016, 6, 72366-72370.	3.6	7
809	On the Generalization of Habituation: How Discrete Biological Systems Respond to Repetitive Stimuli. BioEssays, 2019, 41, e1900028.	2.5	7
810	Developing a selfâ€organized tubulogenesis model of human renal proximal tubular epithelial cells in vitro. Journal of Biomedical Materials Research - Part A, 2020, 108, 795-804.	4.0	7

#	Article	IF	CITATIONS
811	Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Frontiers in Bioengineering and Biotechnology, 2020, 8, 549089.	4.1	7
812	A 3D Tissue Model of Traumatic Brain Injury with Excitotoxicity That Is Inhibited by Chronic Exposure to Gabapentinoids. Biomolecules, 2020, 10, 1196.	4.0	7
813	Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 588014.	4.1	7
814	Integrated functional neuronal network analysis of 3D silk-collagen scaffold-based mouse cortical culture. STAR Protocols, 2021, 2, 100292.	1.2	7
815	Toward Studying Cognition in a Dish. Trends in Cognitive Sciences, 2021, 25, 294-304.	7.8	7
816	3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Molecules, 2022, 27, 2148.	3.8	7
817	Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration. Materials Today Bio, 2022, 15, 100283.	5.5	7
818	Tissue Engineering of Bone., 2006,, 323-373.		6
819	Differentiation of Bone Marrow Stem Cells on Inkjet Printed Silk Lines. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	6
820	Influence of Solution Parameters on Phase Diagram of Recombinant Spider Silk‣ike Block Copolymers. Macromolecular Chemistry and Physics, 2014, 215, 1230-1238.	2.2	6
821	Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials. International Journal of Molecular Sciences, 2015, 16, 20511-20522.	4.1	6
822	The Effects of Mycoplasma Contamination upon the Ability to Form Bioengineered 3D Kidney Cysts. PLoS ONE, 2015, 10, e0120097.	2.5	6
823	Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking. Journal of Biomedical Materials Research - Part A, 2016, 104, 2369-2376.	4.0	6
824	Silk Fibroin: Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses (Adv. Mater.) Tj ETQq0 0 0 0	gBT /Over 21.0	lock 10 Tf 50 2
825	Non-invasive Assessments of Adipose Tissue Metabolism In Vitro. Annals of Biomedical Engineering, 2016, 44, 725-732.	2.5	6
826	Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2549-2564.	2.7	6
827	De Novo Synthesis and Assembly of Flexible and Biocompatible Physical Sensing Platforms. Advanced Materials Technologies, 2019, 4, 1800141.	5.8	6
828	Melatonin-induced osteogenesis with methanol-annealed silk materials. Journal of Bioactive and Compatible Polymers, 2019, 34, 291-305.	2.1	6

#	Article	IF	Citations
829	Interferon-Gamma Stimulated Murine Macrophages In Vitro: Impact of Ionic Composition and Osmolarity and Therapeutic Implications. Bioelectricity, 2020, 2, 48-58.	1.1	6
830	Optogenetically induced cellular habituation in non-neuronal cells. PLoS ONE, 2020, 15, e0227230.	2.5	6
831	Fast and reversible crosslinking of a silk elastin-like polymer. Acta Biomaterialia, 2022, 141, 14-23.	8.3	6
832	Radially Aligned Porous Silk Fibroin Scaffolds as Functional Templates for Engineering Human Biomimetic Hepatic Lobules. ACS Applied Materials & Samp; Interfaces, 2022, 14, 201-213.	8.0	6
833	Silk Hydrogel-Mediated Delivery of Bone Morphogenetic Protein 7 Directly to Subcutaneous White Adipose Tissue Increases Browning and Energy Expenditure. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	6
834	Continued Growth in 2017. ACS Biomaterials Science and Engineering, 2017, 3, 1-1.	5.2	5
835	Label free monitoring of megakaryocytic development and proplatelet formation in vitro. Biomedical Optics Express, 2017, 8, 4742.	2.9	5
836	Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks. Methods in Molecular Biology, 2018, 1777, 181-192.	0.9	5
837	An introduction to nanoengineered biomaterials. , 2019, , 1-11.		5
838	Preclinical assessment of resorbable silk splints for the treatment of pediatric tracheomalacia. Laryngoscope, 2019, 129, 2189-2194.	2.0	5
839	Functional Effects of a Neuromelanin Analogue on Dopaminergic Neurons in 3D Cell Culture. ACS Biomaterials Science and Engineering, 2019, 5, 308-317.	5.2	5
840	Silk-based encapsulation materials to enhance pancreatic cell functions., 2020,, 329-337.		5
841	Engineering immunity for next generation HIV vaccines: The intersection of bioengineering and immunology. Vaccine, 2020, 38, 187-193.	3.8	5
842	Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. Tissue Engineering - Part B: Reviews, 2021, 27, 411-429.	4.8	5
843	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & amp; Interfaces, 2020, 12, 20147-20148.	8.0	5
844	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
845	Bayesian probabilistic forecasting with large-scale educational trend data: a case study using NAEP. Large-Scale Assessments in Education, 2021, 9, .	2.0	5
846	Emerging Trajectories for Next Generation Tissue Engineers. ACS Biomaterials Science and Engineering, 2022, 8, 4598-4604.	5.2	5

#	Article	IF	Citations
847	Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments. Psychometrika, 2023, 88, 1-30.	2.1	5
848	Metal Oxide Nanomaterials with Nitrogenâ€Doped Grapheneâ€Silk Nanofiber Complexes as Templates. Particle and Particle Systems Characterization, 2016, 33, 286-292.	2.3	4
849	Biodegradable silk catheters for the delivery of therapeutics across anatomical repair sites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 501-510.	3.4	4
850	Assessment of Enrichment of Human Mesenchymal Stem Cells Based on Plasma and Mitochondrial Membrane Potentials. Bioelectricity, 2020, 2, 21-32.	1.1	4
851	Bottom-Up Construction of Electrochemically Active Living Filters: From Graphene Oxide Mediated Formation of Bacterial Cables to 3D Assembly of Hierarchical Architectures. ACS Applied Bio Materials, 2020, 3, 7376-7381.	4.6	4
852	Enhancing sustained-release local therapy: Single versus dual chemotherapy for the treatment of neuroblastoma. Surgery, 2020, 167, 969-977.	1.9	4
853	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
854	Rapid construction and enhanced vascularization of microtissue using a magnetic control method. Biofabrication, 2021, 13, 035040.	7.1	4
855	Short Silk Nanoribbons Decorated by Au Nanoparticles as Substrates for Sensitive and Uniform Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Nano Materials, 2021, 4, 6376-6385.	5.0	4
856	Axonal growth on surfaces with periodic geometrical patterns. PLoS ONE, 2021, 16, e0257659.	2.5	4
857	Study the lipidoid nanoparticle mediated genome editing protein delivery using 3D intestinal tissue model. Bioactive Materials, 2021, 6, 3671-3677.	15.6	4
858	Charge-Modulated Accessibility of Tyrosine Residues for Silk-Elastin Copolymer Cross-Linking. Biomacromolecules, 2022, 23, 760-765.	5.4	4
859	Screening neuroprotective compounds in herpes-induced Alzheimer's disease cell and 3D tissue models. Free Radical Biology and Medicine, 2022, 186, 76-92.	2.9	4
860	Surface Organization and Nanopatterning of Collagen by Dip Pen Nanolithography. Microscopy and Microanalysis, 2002, 8, 1020-1021.	0.4	3
861	Nanomechanical and Microstructural Properties of <i>Bombyx mori</i> Silk Films. Materials Research Society Symposia Proceedings, 2004, 841, R2.2.1/Y2.2.1.	0.1	3
862	Ligament Tissue Engineering. , 2006, , 191-211.		3
863	Emulsan-Alginate Microspheres as a New Vehicle for Protein Delivery. ACS Symposium Series, 2006, , 14-29.	0.5	3
864	Semi-automatic quantification of neurite fasciculation in high-density neurite images by the neurite directional distribution analysis (NDDA). Journal of Neuroscience Methods, 2014, 228, 100-109.	2.5	3

#	Article	IF	Citations
865	Multi-modal imaging for assessment of tissue-engineered bone in a critical-sized calvarial defect mouse model. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1732-1740.	2.7	3
866	Structural Insights into the Glycine Pair Motifs in Type III Collagen. ACS Biomaterials Science and Engineering, 2017, 3, 269-278.	5.2	3
867	Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS Applied Bio Materials, 2018, 1, 1677-1686.	4.6	3
868	Prototype of a fish inspired swimming silk robot. , 2018, , .		3
869	Bio-Nanostructures: Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand (Adv. Mater. 20/2018). Advanced Materials, 2018, 30, 1870141.	21.0	3
870	Silk Protein Bioresorbable, Drugâ€Eluting Ear Tubes: Proofâ€ofâ€Concept. Advanced Healthcare Materials, 2019, 8, e1801409.	7.6	3
871	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
872	MSC‣aden Composite Hydrogels for Inflammation and Angiogenic Regulation for Skin Flap Repair. Advanced Therapeutics, 2022, 5, .	3.2	3
873	Gallium–Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2709-2723.	5.2	3
874	Fully implantable and resorbable wireless medical devices for postsurgical infection abatement. , 2015, , .		2
875	Nondestructive, Label-Free Characterization of Mechanical Microheterogeneity in Biomimetic Materials. ACS Biomaterials Science and Engineering, 2018, 4, 3259-3267.	5.2	2
876	Biosynthetic Tubules: Multiscale Approaches to Kidney Engineering. Current Transplantation Reports, 2019, 6, 214-220.	2.0	2
877	Microporous Drugâ€Eluting Large Silk Particles Through Cryoâ€Granulation. Advanced Engineering Materials, 2019, 21, 1801242.	3.5	2
878	Our 2019 Virtual Issue: Methods and Protocols in Materials Science. Chemistry of Materials, 2019, 31, 2683-2684.	6.7	2
879	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
880	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
881	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
882	Cervical Augmentation with an Injectable Silk-Based Gel: Biocompatibility in a Rat Model of Pregnancy. Reproductive Sciences, 2020, 27, 1215-1221.	2.5	2

#	Article	IF	Citations
883	On the effect of neuronal spatial subsampling in smallâ€world networks. European Journal of Neuroscience, 2021, 53, 485-498.	2.6	2
884	Learning and synaptic plasticity in 3D bioengineered neural tissues. Neuroscience Letters, 2021, 750, 135799.	2.1	2
885	Nanomechanical and Microstructural Properties of Bombyx mori Silk Films. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	1
886	Silk fibroin-based active optofluidics. , 2008, , .		1
887	Biomimetics: A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix (Adv. Mater. 32/2013). Advanced Materials, 2013, 25, 4528-4528.	21.0	1
888	Nanoimprinting: Proteinâ€Protein Nanoimprinting of Silk Fibroin Films (Adv. Mater. 17/2013). Advanced Materials, 2013, 25, 2378-2378.	21.0	1
889	High Resolution Mapping of Cytoskeletal Dynamics in Neurons via Combined Atomic Force Microscopy and Fluorescence Microscopy. Materials Research Society Symposia Proceedings, 2013, 1527, 1.	0.1	1
890	Implantable neural probes for chronic electrical recording and optical stimulation., 2013,,.		1
891	Virtual Issue: Methods and Protocols Series in Materials Scienceâ€"2018. Chemistry of Materials, 2018, 30, 1443-1445.	6.7	1
892	Replicating and identifying large cell neuroblastoma using high-dose intra-tumoral chemotherapy and automated digital analysis. Journal of Pediatric Surgery, 2019, 54, 2595-2599.	1.6	1
893	Silk-Based Therapeutics Targeting Pseudomonas aeruginosa. Journal of Functional Biomaterials, 2019, 10, 41.	4.4	1
894	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
895	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
896	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
897	The effects of membrane potential and extracellular matrix composition on vascular differentiation of cardiac progenitor cells. Biochemical and Biophysical Research Communications, 2020, 530, 240-245.	2.1	1
898	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
899	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
900	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1

#	Article	IF	Citations
901	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
902	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
903	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
904	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
905	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
906	Silk nanocoatings of mammalian cells for cytoprotection against mechanical stress. MRS Bulletin, 2021, 46, 795-806.	3.5	1
907	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
908	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
909	3D Model of Thrombopoiesis Blood, 2010, 116, 1609-1609.	1.4	1
910	In Vitro 3D Human Tissue Models for Osteochondral Diseases. , 2008, , 781-819.		1
911	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
912	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
913	Induction of Irritation and Inflammation in a 3D Innervated Tissue Model of the Human Cornea. ACS Biomaterials Science and Engineering, 2020, 6, 6886-6895.	5.2	1
914	Introduction to Enzyme Technology in Polymer Science. ACS Symposium Series, 2001, , 90-99.	0.5	0
915	Quantitative multiparametric two-photon imaging of tissues. , 2009, , .		0
916	Sustained-release silk biomaterials for drug delivery and tissue engineering scaffolds., 2009,,.		0
917	Silk Metamaterials: Metamaterial Silk Composites at Terahertz Frequencies (Adv. Mater. 32/2010). Advanced Materials, 2010, 22, n/a-n/a.	21.0	0
918	Surface Enhanced Vibrational Spectroscopy of Proteins with Plasmonic Nanoantenna Arrays. Materials Research Society Symposia Proceedings, 2010, 1248, 1002.	0.1	0

#	Article	IF	Citations
919	Expression, cross-linking and characterization of recombinant chitin binding resilin. , 2010, , .		O
920	Morphology and Crystallinity Control of Novel Spider Silk-like Block Copolymer. Materials Research Society Symposia Proceedings, 2012, 1417, 19.	0.1	0
921	Biomaterials: Biofunctional Silk/Neuron Interfaces (Adv. Funct. Mater. 9/2012). Advanced Functional Materials, 2012, 22, 1870-1870.	14.9	0
922	Silk Hydrogels: Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer (Adv. Funct. Mater. 1/2013). Advanced Functional Materials, 2013, 23, 57-57.	14.9	0
923	Drug Delivery: Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk (Small 21/2013). Small, 2013, 9, 3546-3546.	10.0	0
924	Fluorescent nanoparticles for biosensing applications. , 2013, , .		0
925	Macromol. Rapid Commun. 21/2015. Macromolecular Rapid Communications, 2015, 36, 1936-1936.	3.9	0
926	Inkjet printing of functionalized silk proteins for enhanced stability and colorimetric bacterial sensing applications. , $2015, \ldots$		0
927	Biopatterning: Precise Protein Photolithography (P ³): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist (Adv. Sci. 9/2017). Advanced Science, 2017, 4, .	11.2	0
928	Virtual Issue: Methods and Protocols Series in Materials Science—2018. ACS Biomaterials Science and Engineering, 2018, 4, 748-750.	5.2	0
929	Early Career Board Announcement. ACS Biomaterials Science and Engineering, 2018, 4, 3450-3450.	5.2	0
930	Preface: Biomaterials Science and Engineering in China Special Issue. ACS Biomaterials Science and Engineering, 2018, 4, 1926-1927.	5.2	0
931	Our 2019 Virtual Issue: Methods and Protocols in Materials Science. ACS Biomaterials Science and Engineering, 2019, 5, 2052-2053.	5. 2	0
932	Feasibility of low field MRI and proteomics for the analysis of Tissue Engineered bone. Biomedical Physics and Engineering Express, 2019, 5, 025037.	1.2	0
933	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
934	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
935	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
936	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0

#	Article	IF	CITATIONS
937	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	O
938	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
939	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
940	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
941	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
942	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
943	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
944	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
945	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
946	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
947	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
948	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
949	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
950	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
951	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
952	Matrix Deformation with Ectopic Cells Induced by Rotational Motion in Bioengineered Neural Tissues. Annals of Biomedical Engineering, 2020, 48, 2192-2203.	2.5	0
953	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
954	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0

#	Article	IF	Citations
955	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	O
956	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
957	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
958	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	5.1	0
959	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
960	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
961	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
962	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
963	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
964	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
965	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
966	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
967	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
968	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
969	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
970	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
971	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
972	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0

#	Article	IF	Citations
973	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
974	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
975	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
976	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
977	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
978	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
979	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
980	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3 . 4	0
981	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5 . 3	0
982	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5 . 4	0
983	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
984	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
985	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
986	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
987	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
988	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
989	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
990	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0

#	Article	IF	CITATIONS
991	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
992	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
993	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	O
994	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
995	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
996	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
997	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
998	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
999	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
1000	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
1001	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
1002	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
1003	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
1004	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
1005	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
1006	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
1007	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
1008	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Environm	10.0	0

#	Article	IF	CITATIONS
1009	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
1010	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
1011	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
1012	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
1013	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
1014	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
1015	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	O
1016	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
1017	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	O
1018	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
1019	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
1020	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
1021	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	O
1022	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
1023	Learning and Synaptic Plasticity in 3D Bioengineered Neural Tissues. FASEB Journal, 2021, 35, .	0.5	O
1024	Brief multiâ€drug treatment via a wearable silkâ€hydrogel bioreactor induces longâ€term limb reâ€patterning and regeneration in adult Xenopus Laevis. FASEB Journal, 2021, 35, .	0.5	0
1025	Mechanical Trainingâ€Driven Structural Remodeling: A Rational Route for Outstanding Highly Hydrated Silk Materials (Small 33/2021). Small, 2021, 17, 2170173.	10.0	O
1026	On the prediction of neuronal microscale topology descriptors based on mesoscale recordings. European Journal of Neuroscience, 2021, 54, 6147-6167.	2.6	0

#	Article	IF	CITATIONS
1027	Protein biomaterial systems for tissue engineering strategies. FASEB Journal, 2008, 22, 232.1.	0.5	0
1028	Multiple Myeloma-Derived Bone-Marrow Mesenchymal Stem Cells: Microrna-, Gene Expression-Profiling and Functional Characterization. Blood, 2012, 120, 1837-1837.	1.4	0
1029	Synthetic Biology and the Production from Brazilian Spider Silk Protein Masp2 in E.coli System. FASEB Journal, 2013, 27, 984.6.	0.5	0
1030	Development Of 3D Models For Studying Megakaryopoiesis In Vitro. Blood, 2013, 122, 3696-3696.	1.4	0
1031	Microrna-Dependent Modulation Of Osteogenesis In a 3D In Vitro Bone Marrow Model System Of Multiple Myeloma. Blood, 2013, 122, 3093-3093.	1.4	O
1032	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
1033	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	O
1034	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
1035	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
1036	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
1037	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
1038	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
1039	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	O
1040	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
1041	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	O
1042	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
1043	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	O
1044	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0

#	Article	IF	Citations
1045	Impact of Membrane Voltage on Formation and Stability of Human Renal Proximal Tubules <i>iin Vitro</i> . ACS Biomaterials Science and Engineering, 2022, 8, 1239-1246.	5.2	0
1046	Tissue Engineering for Cervical Function in Pregnancy. Current Opinion in Biomedical Engineering, 2022, 22, 100385.	3.4	0
1047	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
1048	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
1049	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		O
1050	Optogenetically induced cellular habituation in non-neuronal cells., 2020, 15, e0227230.		0
1051	Silkâ€elastinâ€likeâ€protein/grapheneâ€oxide Composites for Dynamic Electronic Biomaterials. Macromolecular Bioscience, 0, , 2200122.	4.1	0