List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819353/publications.pdf Version: 2024-02-01

DETDI SUISI

#	Article	IF	CITATIONS
1	Cytolytic Properties and Genome Analysis of Rigvir® Oncolytic Virotherapy Virus and Other Echovirus 7 Isolates. Viruses, 2022, 14, 525.	1.5	3
2	Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. Journal of Clinical Virology, 2021, 134, 104691.	1.6	42
3	Enteroviruses (Picornaviridae). , 2021, , 245-255.		1
4	Aseptic meningitis outbreak associated with echovirus 4 in Northern Europe in 2013–2014. Journal of Clinical Virology, 2020, 129, 104535.	1.6	3
5	Recombination Events and Conserved Nature of Receptor Binding Motifs in Coxsackievirus A9 Isolates. Viruses, 2020, 12, 68.	1.5	2
6	Special Issue "Human Picornaviruses― Viruses, 2020, 12, 93.	1.5	0
7	Progress in human picornavirus research: New findings from the AIROPico consortium. Antiviral Research, 2019, 161, 100-107.	1.9	3
8	Detection of human rhinoviruses by reverse transcription strand invasion based amplification method (RT-SIBA). Journal of Virological Methods, 2019, 263, 75-80.	1.0	5
9	Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. Journal of Clinical Virology, 2018, 101, 11-17.	1.6	161
10	Genome Sequences of RIGVIR Oncolytic Virotherapy Virus and Five Other Echovirus 7 Isolates. Genome Announcements, 2018, 6, .	0.8	3
11	Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	56
12	Therapeutic Use of Native and Recombinant Enteroviruses. Viruses, 2016, 8, 57.	1.5	10
13	Role of Heparan Sulfate in Cellular Infection of Integrin-Binding Coxsackievirus A9 and Human Parechovirus 1 Isolates. PLoS ONE, 2016, 11, e0147168.	1.1	25
14	Human Parechovirus 1 Infection Occurs via \hat{I} ± $V\hat{I}$ ² 1 Integrin. PLoS ONE, 2016, 11, e0154769.	1.1	30
15	Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells. Virology Journal, 2016, 13, 171.	1.4	7
16	Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test. New Microbes and New Infections, 2016, 11, 17-19.	0.8	18
17	Elicitation of T-cell responses by structural and non-structural proteins of coxsackievirus B4. Journal of General Virology, 2015, 96, 322-330.	1.3	3
18	Genome Sequence of Coxsackievirus A6, Isolated during a Hand-Foot-and-Mouth Disease Outbreak in Finland in 2008. Genome Announcements, 2014, 2, .	0.8	7

#	Article	IF	CITATIONS
19	Isolation and identification of cyclic lipopeptides from Paenibacillus ehimensis, strain IB-X-b. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 973, 9-16.	1.2	20
20	Generation and characterization of a single-chain anti-EphA2 antibody. Growth Factors, 2014, 32, 214-222.	0.5	10
21	High-level expression of a full-length Eph receptor. Protein Expression and Purification, 2013, 92, 112-118.	0.6	9
22	Status and Prospects of Plant Virus Control Through Interference with Vector Transmission. Annual Review of Phytopathology, 2013, 51, 177-201.	3.5	173
23	Complete Genome Sequences of Three Strains of Coxsackievirus A7. Genome Announcements, 2013, 1, e0014613.	0.8	2
24	Structural and Functional Analysis of Coxsackievirus A9 Integrin α _v β ₆ Binding and Uncoating. Journal of Virology, 2013, 87, 3943-3951.	1.5	46
25	Simultaneous Detection and Differentiation of Human Rhino- and Enteroviruses in Clinical Specimens by Real-Time PCR with Locked Nucleic Acid Probes. Journal of Clinical Microbiology, 2013, 51, 3960-3967.	1.8	46
26	Erratum to "Endocytosis of Integrin-Binding Human Picornaviruses― Advances in Virology, 2013, 2013, 1-1.	0.5	2
27	The Association of Recombination Events in the Founding and Emergence of Subgenogroup Evolutionary Lineages of Human Enterovirus 71. Journal of Virology, 2012, 86, 2676-2685.	1.5	107
28	Endocytosis of Integrin-Binding Human Picornaviruses. Advances in Virology, 2012, 2012, 1-9.	0.5	17
29	Structural Analysis of Coxsackievirus A7 Reveals Conformational Changes Associated with Uncoating. Journal of Virology, 2012, 86, 7207-7215.	1.5	41
30	A combined method for rescue of modified enteroviruses by mutagenic primers, long PCR and T7 RNA polymerase-driven in vivo transcription. Journal of Virological Methods, 2011, 171, 129-133.	1.0	3
31	Biological control of wood decay against fungal infection. Journal of Environmental Management, 2011, 92, 1681-1689.	3.8	40
32	Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18085-18090.	3.3	98
33	Internalization of Coxsackievirus A9 Is Mediated by β2-Microglobulin, Dynamin, and Arf6 but Not by Caveolin-1 or Clathrin. Journal of Virology, 2010, 84, 3666-3681.	1.5	63
34	Interaction of α _V β ₃ and α _V β ₆ Integrins with Human Parechovirus 1. Journal of Virology, 2010, 84, 8509-8519.	1.5	59
35	Evolutionary Dynamics and Temporal/Geographical Correlates of Recombination in the Human Enterovirus Echovirus Types 9, 11, and 30. Journal of Virology, 2010, 84, 9292-9300.	1.5	95
36	Coxsackievirus A6 and Hand, Foot, and Mouth Disease, Finland. Emerging Infectious Diseases, 2009, 15, 1485-1488.	2.0	270

#	Article	IF	CITATIONS
37	Typing of Enteroviruses by Use of Microwell Oligonucleotide Arrays. Journal of Clinical Microbiology, 2009, 47, 1863-1870.	1.8	13
38	Integrin ÂVÂ6 is a high-affinity receptor for coxsackievirus A9. Journal of General Virology, 2009, 90, 197-204.	1.3	33
39	Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy. Virology, 2008, 378, 162-168.	1.1	14
40	Clinical effects of rhinovirus infections. Journal of Clinical Virology, 2008, 43, 411-414.	1.6	80
41	Wide-range antifungal antagonism ofPaenibacillus ehimensisIB-X-b and its dependence on chitinase and β-1,3-glucanase production. Canadian Journal of Microbiology, 2008, 54, 577-587.	0.8	44
42	Rhinovirus Transmission within Families with Children: Incidence of Symptomatic and Asymptomatic Infections. Journal of Infectious Diseases, 2008, 197, 382-389.	1.9	224
43	RNA silencing as a general defence mechanism against pathogens. , 2007, , 315-325.		0
44	Mutagenic analysis of Potato Virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1–CP binding and viral RNA translation activation. Molecular Plant Pathology, 2007, 9, 071127144754003-???.	2.0	35
45	Increase of histidine content in Brassica rapa subsp. oleifera by over-expression of histidine-rich fusion proteins. Molecular Breeding, 2005, 14, 455-462.	1.0	2
46	Microbial Dextran-Hydrolyzing Enzymes: Fundamentals and Applications. Microbiology and Molecular Biology Reviews, 2005, 69, 306-325.	2.9	210
47	Role of Viral Movement and Coat Proteins and RNA in Phloem-dependent Movement and Phloem Unloading of Tobamoviruses. Journal of Phytopathology, 2004, 152, 622-629.	0.5	13
48	Black currant reversion virus, a mite-transmitted nepovirus. Molecular Plant Pathology, 2004, 5, 167-173.	2.0	34
49	Characteristics of RNA Silencing in Plants: Similarities and Differences Across Kingdoms. Plant Molecular Biology, 2004, 54, 157-174.	2.0	47
50	Increase of histidine content in Brassica rapa subsp. oleifera by over-expression of histidine-rich fusion proteins. Molecular Breeding, 2004, 14, 455-462.	1.0	7
51	LOCALIZATION OF DETERMINANTS FOR ANTIGENICITY AND MITE-TRANSMISSION USING STRUCTURAL MODEL OF BLACKCURRANT REVERSION VIRUS. Acta Horticulturae, 2004, , 103-108.	0.1	2
52	Purification and properties of extracellular dextranase from a Bacillus sp Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 796, 315-326.	1.2	35
53	Agrobacterium–mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiology and Biochemistry, 2003, 41, 773-778.	2.8	21
54	Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation. Journal of General Virology, 2003, 84, 727-732.	1.3	34

#	Article	IF	CITATIONS
55	Dye-coupling in Tobacco Mesophyll Cells Surrounding Growing Tobacco Mosaic Tobamovirus-induced Local Lesions. Journal of Phytopathology, 2000, 148, 379-382.	0.5	5
56	Replication in the phloem is not necessary for efficient vascular transport of tobacco mosaic tobamovirus. FEBS Letters, 1999, 447, 121-123.	1.3	12
57	Corrigendum to: Replication in the phloem is not necessary for efficient vascular transport of tobacco mosaic tobamovirus (FEBS 21750). FEBS Letters, 1999, 451, 214-214.	1.3	0
58	Detection of Tobacco Mosaic Virus Movement Protein in Association with Tobacco Nuclei Isolated from Intact and Detached Leaves. Journal of Phytopathology, 1998, 146, 27-30.	0.5	3
59	Characterization of the coat protein gene of mite-transmitted blackcurrant reversion associated nepovirus. Virus Research, 1998, 53, 1-11.	1.1	25
60	Selection of Single-Chain Variable Fragment Antibodies to Black Currant Reversion Associated Virus from a Synthetic Phage Display Library. Phytopathology, 1998, 88, 230-233.	1.1	15
61	PARTICLE PROPERTIES OF BLACKCURRANT REVERSION ASSOCIATED VIRUS - A NEW MITE-TRANSMITTED NEPOVIRUS. Acta Horticulturae, 1998, , 99-104.	0.1	2
62	DETECTION OF THE PUTATIVE CAUSAL AGENT OF BLACKCURRANT REVERSION DISEASE. Acta Horticulturae, 1998, , 93-98.	0.1	11
63	Purification and Properties of a New Virus from Black Currant, Its Affinities with Nepoviruses, and Its Close Association with Black Currant Reversion Disease. Phytopathology, 1997, 87, 404-413.	1.1	48
64	<i>Ribes</i> host range and erratic distribution within plants of blackcurrant reversion associated virus provide further evidence for its role as the causal agent of reversion disease. Annals of Applied Biology, 1997, 131, 283-295.	1.3	26