
Hanshan Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Printing Processability of a Thermally Conductive Compound Based on Carbon Nanofiller-Modified Thermoplastic Polyamide 12. Polymers, 2022, 14, 470.	4.5	7
2	Active-screen plasma surface multi-functionalisation of biopolymers and carbon-based materials – An overview. Surface and Coatings Technology, 2022, 442, 128188.	4.8	10
3	Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate. Polymers, 2022, 14, 824.	4.5	0
4	Plasma-enabled synthesis and modification of advanced materials for electrochemical energy storage. Energy Storage Materials, 2022, 50, 161-185.	18.0	28
5	Active-screen plasma multi-functionalization of graphene oxide for supercapacitor application. Journal of Materials Science, 2021, 56, 3296-3311.	3.7	14
6	Development of surfaces with antibacterial durability through combined S phase plasma hardening and athermal femtosecond laser texturing. Applied Surface Science, 2021, 565, 150594.	6.1	14
7	The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres. Polymers, 2021, 13, 3457.	4.5	7
8	Effect of μPlasma Modification on the Wettability and the Ageing Behaviour of Glass Fibre Reinforced Polyamide 6 (GFPA6). Materials, 2021, 14, 7721.	2.9	5
9	Synthesis and in-vitro antibacterial properties of the novel Ag wires reinforced carbon based composite coatings. Applied Surface Science, 2020, 517, 146207.	6.1	3
10	Enhanced properties of PANâ€derived carbon fibres and resulting composites by active screen plasma surface functionalisation. Plasma Processes and Polymers, 2020, 17, 1900252.	3.0	18
11	Multistep active screen plasma co-alloying the treatment of metallic bipolar plates. Surface Engineering, 2020, 36, 539-546.	2.2	7
12	A study on the effect of ultrashort pulsed laser texturing on the microstructure and properties of metastable S phase layer formed on AISI 316L surfaces. Applied Surface Science, 2020, 511, 145557.	6.1	11
13	Evaluation of the creep behaviour of the carbon fibre in an unidirectional pultruded reinforced composite using nano-indentation technique. Polymer Testing, 2019, 80, 106091.	4.8	9
14	Synthesis and in-vitro antibacterial properties of a functionally graded Ag impregnated composite surface. Materials Science and Engineering C, 2019, 99, 150-158.	7.3	7
15	Tribological performance of surface engineered low-cost beta titanium alloy. Wear, 2019, 426-427, 952-960.	3.1	14
16	Plasma Surface Functionalization of Carbon Nanofibres with Silver, Palladium and Platinum Nanoparticles for Cost-Effective and High-Performance Supercapacitors. Micromachines, 2019, 10, 2.	2.9	19
17	Study on the carbon nanotubes reinforced nanocomposite coatings. Diamond and Related Materials, 2019, 91, 247-254.	3.9	12
18	Response of a molybdenum alloy to plasma nitriding. International Journal of Refractory Metals and Hard Materials, 2018, 72, 388-395.	3.8	8

HANSHAN DONG

#	Article	IF	CITATIONS
19	Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels. Vacuum, 2018, 148, 224-229.	3.5	36
20	Effect of pulse frequency on the one-step preparation of superhydrophobic surface by pulse electrodeposition. Applied Surface Science, 2018, 458, 603-611.	6.1	43
21	Viscoelastic response of carbon fibre reinforced polymer during push-out tests. Composites Part A: Applied Science and Manufacturing, 2018, 112, 178-185.	7.6	16
22	Surface functionalization of carbon fibers with active screen plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	24
23	Effect of microstructure on the plasma surface treatment of carbon fibres. Journal of Composite Materials, 2017, 51, 3239-3256.	2.4	17
24	A novel hybrid method combining ASP with PECVD for in - situ low temperature synthesis of vertically aligned carbon nanotube films. Diamond and Related Materials, 2017, 77, 16-24.	3.9	8
25	Carbon Nanofibers Functionalized with Active Screen Plasma-Deposited Metal Nanoparticles for Electrical Energy Storage Devices. ACS Applied Materials & Interfaces, 2017, 9, 23195-23201.	8.0	24
26	Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 2338-2348.	7.1	38
27	Sliding friction and wear behaviour of Titanium-Zirconium-Molybdenum (TZM) alloy against Al2O3 and Si3N4 balls under several environments and temperatures. Tribology International, 2017, 110, 348-357.	5.9	24
28	The effect of active screen plasma treatment conditions on the growth and performance of Pt nanowire catalyst layer in DMFCs. International Journal of Hydrogen Energy, 2016, 41, 7622-7630.	7.1	26
29	Plasma-nitriding and characterization of FeAl40 iron aluminide. Acta Materialia, 2015, 86, 341-351.	7.9	32
30	Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2015, 40, 10281-10292.	7.1	36
31	Active screen plasma surface co-alloying treatments of 316 stainless steel with nitrogen and silver for fuel cell bipolar plates. Surface and Coatings Technology, 2015, 283, 122-128.	4.8	35
32	Reducing and multiple-element doping of graphene oxide using active screen plasma treatments. Carbon, 2015, 95, 338-346.	10.3	24
33	Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21470-21479.	7.1	56
34	Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Scientific Reports, 2014, 4, 6439.	3.3	33
35	Surface modification of a medical grade Coâ€Crâ€Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon. Surface and Coatings Technology, 2013, 232, 906-911.	4.8	43
36	Active screen plasma nitriding enhances cell attachment to polymer surfaces. Applied Surface Science, 2013, 273, 787-798.	6.1	25

HANSHAN DONG

#	Article	IF	CITATIONS
37	Characterization of active screen plasma modified polyurethane surfaces. Surface and Coatings Technology, 2012, 206, 4799-4807.	4.8	29
38	Active screen plasma surface modification of polycaprolactone to improve cell attachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 314-320.	3.4	30
39	EBSD and AFM observations of the microstructural changes induced by low temperature plasma carburising on AISI 316. Applied Surface Science, 2011, 258, 608-613.	6.1	25
40	Evaluation of the biocompatibility of S-phase layers on medical grade austenitic stainless steels. Journal of Materials Science: Materials in Medicine, 2011, 22, 1269-1278.	3.6	29
41	A study of low temperature mechanical properties and creep behaviour of polypropylene using a new sub-ambient temperature nanoindentation test platform. Journal Physics D: Applied Physics, 2010, 43, 425404.	2.8	23
42	Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel. Surface and Coatings Technology, 2009, 203, 3669-3675.	4.8	62
43	On the fundamental mechanisms of active screen plasma nitriding. Vacuum, 2009, 84, 321-325.	3.5	125