
Maria Assunta Navarra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different approaches to obtain functionalized alumina as additive in polymer electrolyte membranes. Journal of Solid State Electrochemistry, 2022, 26, 17-27.	1.2	7
2	Safe gel polymer electrolytes for high voltage Li-batteries. Electrochimica Acta, 2022, 401, 139470.	2.6	17
3	Electrolyte Measures to Prevent Polysulfide Shuttle in Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	20
4	Removal of Copper Corrosion Products by Using Green Deep Eutectic Solvent and Bio-Derivative Cellulose Membrane. Polymers, 2022, 14, 2284.	2.0	3
5	Emerging calcium batteries. Journal of Power Sources, 2021, 482, 228875.	4.0	48
6	Improvement of Graphite Interfacial Stability in Allâ€5olidâ€5tate Cells Adopting Sulfide Glassy Electrolytes. ChemElectroChem, 2021, 8, 689-696.	1.7	7
7	Inter- and Intramolecular Interactions in Ether-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2021, 125, 2380-2388.	1.2	5
8	Upcycling Real Waste Mixed Lithium-Ion Batteries by Simultaneous Production of rGO and Lithium-Manganese-Rich Cathode Material. ACS Sustainable Chemistry and Engineering, 2021, 9, 13303-13311.	3.2	15
9	Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochimica Acta, 2021, 395, 139104.	2.6	10
10	Composite Nafion-CaTiO3-δ Membranes as Electrolyte Component for PEM Fuel Cells. Polymers, 2020, 12, 2019.	2.0	14
11	Production of nanostructured electrodes from spent Lithium ion batteries and their application in new energy storage devices. AIP Conference Proceedings, 2020, , .	0.3	0
12	Titanium-Based Tetrakis-2,3-[5,6-di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization. European Journal of Inorganic Chemistry, 2020, 2020, 2417-2423.	1.0	2
13	A Novel Li + â€Conducting Polymer Membrane Gelled by Fluorineâ€Free Electrolyte Solutions for Liâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 1112-1119.	2.4	6
14	Electrochemical synthesis of nanowire anodes from spent lithium ion batteries. Electrochimica Acta, 2019, 319, 481-489.	2.6	25
15	Enhancing Oxygen Reduction Reaction Catalytic Activity Using a Sub‣toichiometric CaTiO 3â^' δAdditive. ChemElectroChem, 2019, 6, 5941-5945.	1.7	7
16	Electrochemical synthesis of nanowires electrodes and their application in energy storage devices. AIP Conference Proceedings, 2019, , .	0.3	2
17	Polymer Electrolyte Membranes Based on Nafion and a Superacidic Inorganic Additive for Fuel Cell Applications. Polymers, 2019, 11, 914.	2.0	32
18	Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochimica Acta, 2019, 316, 1-7.	2.6	32

#	Article	IF	CITATIONS
19	Bis(oxalato)borate and diï¬,uoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries. Electrochimica Acta, 2019, 315, 17-23.	2.6	19
20	Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochimica Acta, 2019, 308, 115-120.	2.6	22
21	Chemically stabilised extruded and recast short side chain Aquivion® proton exchange membranes for high current density operation in water electrolysis. Journal of Membrane Science, 2019, 578, 136-148.	4.1	48
22	Enhancing Oxygen Reduction Reaction Catalytic Activity Using a Subâ€Stoichiometric CaTiO 3â^ δAdditive. ChemElectroChem, 2019, 6, 5910-5910.	1.7	0
23	Performance Improvement in Direct Methanol Fuel Cells by Using CaTiO3-δ Additive at the Cathode. Catalysts, 2019, 9, 1017.	1.6	9
24	Composite Nafion Membranes with CaTiO3â~δ Additive for Possible Applications in Electrochemical Devices. Membranes, 2019, 9, 143.	1.4	11
25	V ₂ O ₅ Cryogel: A Versatile Electrode for All Solid State Lithium Batteries. Journal of the Electrochemical Society, 2019, 166, A3927-A3931.	1.3	2
26	Novel bis(fluorosulfonyl)imide-based and ether-functionalized ionic liquids for lithium batteries with improved cycling properties. Electrochimica Acta, 2019, 293, 160-165.	2.6	25
27	The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet–Taft parameters. Physical Chemistry Chemical Physics, 2018, 20, 7989-7997.	1.3	16
28	Gel Polymer Electrolytes Based on Silica-Added Poly(ethylene oxide) Electrospun Membranes for Lithium Batteries. Membranes, 2018, 8, 126.	1.4	6
29	A versatile electrochemical method to synthesize Co-CoO core-shell nanowires anodes for lithium ion batteries with superior stability and rate capability. Electrochimica Acta, 2018, 290, 347-355.	2.6	18
30	Screening and Assessment of Low-Molecular-Weight Biomarkers of Milk from Cow and Water Buffalo: An Alternative Approach for the Rapid Identification of Adulterated Water Buffalo Mozzarellas. Journal of Agricultural and Food Chemistry, 2018, 66, 5410-5417.	2.4	18
31	Tailoring the physical properties of the mixtures of ionic liquids: a microscopic point of view. Physical Chemistry Chemical Physics, 2017, 19, 8322-8329.	1.3	23
32	New Etherâ€functionalized Morpholinium―and Piperidiniumâ€based Ionic Liquids as Electrolyte Components in Lithium and Lithium–Ion Batteries. ChemSusChem, 2017, 10, 2496-2504.	3.6	38
33	A high-power and fast charging Li-ion battery with outstanding cycle-life. Scientific Reports, 2017, 7, 1104.	1.6	37
34	Stabilizing the Performance of High apacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. ChemSusChem, 2017, 10, 3490-3496.	3.6	20
35	Sulfated titania as additive in Nafion membranes for water electrolysis applications. International Journal of Hydrogen Energy, 2017, 42, 27851-27858.	3.8	19
36	Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnology for Biofuels, 2017, 10, 303.	6.2	122

Maria Assunta Navarra

#	Article	IF	CITATIONS
37	(Invited) Conductivity and Dielectric Relaxations in New Morpholinium- and Piperidinium-Based Ionic Liquids. ECS Meeting Abstracts, 2017, , .	0.0	0
38	Critical Filler Concentration in Sulfated Titania-Added Nafionâ"¢ Membranes for Fuel Cell Applications. Energies, 2016, 9, 272.	1.6	9
39	Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes. Polymers, 2016, 8, 68.	2.0	19
40	Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery. Journal of the Electrochemical Society, 2016, 163, A1175-A1180.	1.3	14
41	Novel Liquid and Polymer Electrolytes for Lithium-Sulfur Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
42	Novel Ether- or Sulfur-Functionalized Ionic Liquids As Electrolyte Components in Advanced Lithium Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
43	Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes. Membranes, 2015, 5, 810-823.	1.4	71
44	An Infrared Spectroscopy Study of the Conformational Evolution of the Bis(trifluoromethanesulfonyl)imide Ion in the Liquid and in the Glass State. Advances in Condensed Matter Physics, 2015, 2015, 1-11.	0.4	19
45	An NMR study on the molecular dynamic and exchange effects in composite Nafion/sulfated titania membranes for PEMFCs. International Journal of Hydrogen Energy, 2015, 40, 14651-14660.	3.8	25
46	Functionalized Al2O3 particles as additives in proton-conducting polymer electrolyte membranes for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 14757-14767.	3.8	24
47	Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives. Membranes, 2014, 4, 123-142.	1.4	69
48	Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion. Journal of Power Sources, 2014, 245, 830-835.	4.0	45
49	In-situ gelled electrolyte for lithium battery: Electrochemical andÂRaman characterization. Journal of Power Sources, 2014, 245, 232-235.	4.0	8
50	Stabilization of Different Conformers of Bis(trifluoromethanesulfonyl)imide Anion in Ammonium-Based Ionic Liquids at Low Temperatures. Journal of Physical Chemistry A, 2014, 118, 8758-8764.	1.1	42
51	Low-Temperature Phase Transitions of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide Swelling a Polyvinylidenefluoride Electrospun Membrane. Journal of Physical Chemistry C, 2014, 118, 5749-5755.	1.5	24
52	Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast Nafion membranes. International Journal of Energy Research, 2013, 37, 347-357.	2.2	25
53	Hybrid membranes based on sulfated titania nanoparticles as low-cost proton conductors. Ionics, 2013, 19, 1203-1206.	1.2	11
54	Mixtures of ionic liquid – Alkylcarbonates as electrolytes for safe lithium-ion batteries. Journal of Power Sources, 2013, 227, 8-14.	4.0	172

#	Article	IF	CITATIONS
55	Composite Poly(ethylene oxide) Electrolytes Plasticized by <i>N</i> â€Alkylâ€ <i>N</i> â€butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide for Lithium Batteries. ChemSusChem, 2013, 6, 1037-1043.	3.6	69
56	N-n-Butyl-N-methylpyrrolidinium hexafluorophosphate-added electrolyte solutions and membranes for lithium-secondary batteries. Journal of Power Sources, 2013, 233, 104-109.	4.0	17
57	Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bulletin, 2013, 38, 548-553.	1.7	101
58	Effects of water freezing on the mechanical properties of nafion membranes. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1421-1425.	2.4	16
59	Characterization of sulfated-zirconia/Nafion® composite membranes for proton exchange membrane fuel cells. Journal of Power Sources, 2012, 198, 66-75.	4.0	58
60	The tetragonal-to-orthorhombic phase transformation in ammonia borane and in its deuterium substituted compounds. Journal of Alloys and Compounds, 2011, 509, S709-S713.	2.8	4
61	Ionic Liquidâ€Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries. ChemSusChem, 2011, 4, 125-130.	3.6	66
62	Hydrogen isotope effects on the structural phase transition of NH3BH3. International Journal of Hydrogen Energy, 2011, 36, 7927-7931.	3.8	2
63	Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 988-998.	4.0	59
64	Solvent-free nanocomposite proton-conducting membranes composed of cesium salt of phosphotungstic acid doped PVDF–CTFE/PEO blend. Ionics, 2010, 16, 681-687.	1.2	4
65	Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics. Chemistry of Materials, 2010, 22, 813-821.	3.2	103
66	Temperature-dependent Performances of a Fuel Cell Using a Superacid Zirconia-doped Nafion Polymer Electrolyte. Fuel Cells, 2009, 9, 222-225.	1.5	18
67	Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. Journal of Applied Electrochemistry, 2008, 38, 931-938.	1.5	16
68	Aprotic ionic liquids as electrolyte components in protonic membranes. Journal of Applied Electrochemistry, 2008, 38, 993-996.	1.5	25
69	A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2007, 154, G183.	1.3	38
70	New, high temperature superacid zirconia-doped Nafionâ"¢ composite membranes. Journal of Materials Chemistry, 2007, 17, 3210.	6.7	85
71	New Composite, Gel-Type Proton Membranes. ECS Transactions, 2006, 1, 169-174.	0.3	2
72	Composite Gel-Type Proton Membranes. Journal of the Electrochemical Society, 2006, 153, A1284.	1.3	10

#	Article	IF	CITATIONS
73	Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application. Journal of the Electrochemical Society, 2005, 152, A2400.	1.3	65
74	Novel, Ionic-Liquid-Based, Gel-Type Proton Membranes. Electrochemical and Solid-State Letters, 2005, 8, A324.	2.2	46
75	In Situ XRD Studies of the Hydration Degree of the Polymeric Membrane in a Fuel Cell. Electrochemical and Solid-State Letters, 2004, 7, A519.	2.2	18
76	A composite proton-conducting membrane based on a poly(vinylidene)fluoride-poly(acrylonitrile), PVdF-PAN blend. Journal of Solid State Electrochemistry, 2004, 8, 804.	1.2	23
77	PVdF-Based Membranes for DMFC Applications. Journal of the Electrochemical Society, 2003, 150, A1528.	1.3	37
78	Macro- and Microscopic Properties of Nonaqueous Proton Conducting Membranes Based on PAN. Journal of the Electrochemical Society, 2003, 150, A267.	1.3	11